基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着交通愈加发达,道路愈加拥堵,如何实时准确地获取车辆基本信息以便交通部门及时管理特定路段和路口的车辆显得日益重要.对交通视频中车辆的检测和识别,不仅需要实时检测,还要保证其准确性.针对实际情况中车辆之间的遮挡、光照的变化、阴影、道路旁树枝的晃动、背景中固定对象的移动等因素严重影响检测与识别的精度的问题,提出基于 Faster-RCNN(Faster-Regions with CNN features)的车辆实时检测改进算法.首先采用k-means算法对KITTI数据集的目标框进行聚类,得到合适的长宽比,并增加一组尺度(642 )以适应差异较大的车辆尺寸;然后改进区域提案网络,降低计算量,优化网络结构;最后在训练阶段采用多尺度策略,降低漏检率,提高精确率.实验结果表明:改进后的车辆检测算法的 mAP(mean Average Precision)达到了 82.20%,检测速率为每张照片耗时0.03875 s,基本能够满足车辆实时检测的需求.
推荐文章
基于Faster-RCNN的回环检测优化算法
三维重建
同时定位与地图构建
回环检测
神经网络
词袋模型
优化算法
基于改进Faster RCNN的安全帽佩戴检测研究
安全帽佩戴检测
FasterRCNN
多尺度训练
在线困难样本挖掘
多部件结合
一种改进的Faster R-CNN对小尺度车辆检测研究
FasterR-CNN
小尺度车辆检测
全卷积网络
区域建议网络
锚选择
平衡锚数量
基于Faster-RCNN的遥感图像飞机检测算法
遥感图像
飞机检测
Faster-RCNN
残差网络
区域建议网络
在线困难样本挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于Faster-RCNN的车辆实时检测改进算法
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 车辆实时检测 Faster-RCNN k-means算法 区域提案网络 多尺度训练
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 231-237
页数 7页 分类号 TP391.41
字数 3559字 语种 中文
DOI 10.13232/j.cnki.jnju.2019.02.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王洪元 常州大学信息科学与工程学院 77 372 11.0 14.0
2 张继 常州大学信息科学与工程学院 18 65 5.0 7.0
3 张中宝 常州大学信息科学与工程学院 2 12 2.0 2.0
4 杨薇 常州大学信息科学与工程学院 2 12 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (5)
同被引文献  (24)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
车辆实时检测
Faster-RCNN
k-means算法
区域提案网络
多尺度训练
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导