基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对滚动轴承全寿命退化状态难以有效识别的问题,提出了一种基于变分模态分解(VMD)与支持向量机(SVM)相结合的滚动轴承退化状态识别方法.该方法先用包络熵确定VMD的最优分解层数,再根据峭度及相关系数准则选择VMD分解后的敏感本征模态分量(IMF),然后提取敏感IMF分量的时域指标和能量熵构成退化特征向量序列,最后随机抽取不同退化状态下的少量样本输入SVM模型训练,建立退化状态模型库,并用真实数据进行测试.实验结果表明该方法能够准确识别出轴承的退化状态,通过与EMD-SVM、EEMD-SVM模型对比,验证了该方法的优越性.
推荐文章
基于ELMD与LS-SVM的滚动轴承故障诊断方法
ELMD
模式混淆
LS-SVM
滚动轴承
故障诊断
基于随机共振和VMD分解的风电机组滚动轴承故障特征提取
风电机组
滚动轴承
随机共振
变分模态分解
故障诊断
多退化变量灰色预测模型的滚动轴承剩余寿命预测
剩余寿命预测
滚动轴承
多退化变量灰色预测模型
退化趋势特征参数
基于VMD和对称差分能量算子解调的滚动轴承故障诊断方法
变分模态分解
对称差分能量算子
峭度
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于VMD-SVM的滚动轴承退化状态识别
来源期刊 机械设计与制造 学科 工学
关键词 变分模态分解(VMD) 支持向量机(SVM) 滚动轴承 退化状态识别
年,卷(期) 2020,(1) 所属期刊栏目 先进制造技术
研究方向 页码范围 96-100
页数 5页 分类号 TH16|TH133.33
字数 4770字 语种 中文
DOI 10.3969/j.issn.1001-3997.2020.01.025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈长征 沈阳工业大学机械工程学院 199 1777 21.0 34.0
2 苏晓明 沈阳工业大学机械工程学院 45 121 6.0 9.0
3 吕明珠 沈阳工业大学机械工程学院 21 86 5.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (95)
共引文献  (59)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(11)
  • 参考文献(0)
  • 二级参考文献(11)
2012(10)
  • 参考文献(0)
  • 二级参考文献(10)
2013(10)
  • 参考文献(3)
  • 二级参考文献(7)
2014(12)
  • 参考文献(1)
  • 二级参考文献(11)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(10)
  • 参考文献(3)
  • 二级参考文献(7)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
变分模态分解(VMD)
支持向量机(SVM)
滚动轴承
退化状态识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械设计与制造
月刊
1001-3997
21-1140/TH
大16开
沈阳市北陵大街56号
8-131
1963
chi
出版文献量(篇)
18688
总下载数(次)
40
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导