基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
计算机辅助肺结节良恶性诊断对肺癌的及时治疗具有重要意义.针对计算机辅助诊断系统中肺结节良恶性诊断准确率较低,误诊率、错诊率相对较高的现状,提出一种基于残差网络的肺结节良恶性分类模型.首先选择部分LIDC-IDRI的肺部CT图像(共计10 402幅)作为数据集,然后通过图像的水平翻转对数据进行扩增,再将图像转为单通道,并进行裁剪及归一化等处理,最后将数据分为训练集与测试集(7∶3),对所设计的残差网络(ResNet-26)进行训练与测试.完成训练后,测试得到肺结节良恶性分类准确率、敏感性及特异性分别为97.53%,97.91%及97.18%,计算得出AUC为0.958.通过对比,实验结果在各个指标均优于现存的其他多种方法,其分类结果可为医生的诊断提供较好的辅助参考.
推荐文章
图像灰度密度分布计算模型及肺结节良恶性分类
肺结节分类
密度分布特征
K-均值
基于集成随机森林模型的肺结节良恶性分类
计算机辅助诊断
CT图像
肺结节良恶性分类
集成随机森林
基于深度残差网络ResNet的废料瓶分类系统
废料瓶分类
Opencv
深度学习
ResNet18
基于深度学习的医学图像肺结节检测
肺结节检测
深度学习
卷积神经网络
假阳性去除
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于残差网络深度学习的肺部CT图像结节良恶性分类模型
来源期刊 仪器仪表学报 学科 工学
关键词 深度学习 残差网络 肺结节 良恶性分类 卷积神经网络
年,卷(期) 2020,(3) 所属期刊栏目 视觉检测与图像测量
研究方向 页码范围 248-256
页数 9页 分类号 TP391|TH7
字数 语种 中文
DOI 10.19650/j.cnki.cjsi.J1905600
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (142)
共引文献  (461)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(8)
  • 参考文献(2)
  • 二级参考文献(6)
2012(9)
  • 参考文献(0)
  • 二级参考文献(9)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(21)
  • 参考文献(1)
  • 二级参考文献(20)
2016(26)
  • 参考文献(1)
  • 二级参考文献(25)
2017(20)
  • 参考文献(2)
  • 二级参考文献(18)
2018(9)
  • 参考文献(5)
  • 二级参考文献(4)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
残差网络
肺结节
良恶性分类
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
仪器仪表学报
月刊
0254-3087
11-2179/TH
大16开
北京市东城区北河沿大街79号
2-369
1980
chi
出版文献量(篇)
12507
总下载数(次)
27
总被引数(次)
146776
论文1v1指导