基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过蛋白质的序列、结构等信息构建完整的蛋白质宇宙是生物信息学中的重要课题,相关研究对蛋白质结构预测、蛋白质进化路径分析以及蛋白质结构设计等方面的研究都有重要的意义.从蛋白质结构的一种简化表示——蛋白质接触图出发,通过训练卷积神经网络进行特征提取,筛选出可识别结构域折叠类型的最小特征向量,构建蛋白质折叠类型空间,并使用谱聚类等方法对不同蛋白质折叠类型的高维分布情况进行分析.得到的最小特征向量兼顾了信息的完整性与冗余度,可以很好地表示全部七种常见蛋白质类的空间关联.该研究结果填补了之前蛋白质宇宙研究中对不常见类的空间位置和相互关系描述的空白,加深了对于蛋白质结构相似性的理解.
推荐文章
杨树蛋白质二级结构的人工神经网络预测
杨树
蛋白质
二级结构
人工神经网络
预测
基于LSTM-Attention神经网络的文本特征提取方法
LSTM-Attention
注意力机制
文本分类
神经网络
文本特征提取
softmax
基于生物机制脉冲神经网络的特征提取
快速小波变换
脉冲神经元网络
图像压缩
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的蛋白质折叠类型最小特征提取
来源期刊 南京大学学报(自然科学版) 学科 生物学
关键词 蛋白质宇宙 深度学习 卷积神经网络 蛋白质折叠类型识别
年,卷(期) 2020,(5) 所属期刊栏目
研究方向 页码范围 744-753
页数 10页 分类号 Q61
字数 语种 中文
DOI 10.13232/j.cnki.jnju.2020.05.014
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (21)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(1)
  • 二级参考文献(0)
1983(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(2)
  • 参考文献(2)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
蛋白质宇宙
深度学习
卷积神经网络
蛋白质折叠类型识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导