基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 在基于舌图像的中医体质类型分类中,舌图像的类间距小,传统手工特征提取时存在底层特征不能够充分表达舌图像所包含的全部信息等问题.因此本文提出一种基于深度网络特征层融合的体质类型分类方法 ,以提高体质类型分类的准确率.方法 通过比较不同网络模型对舌图像的分类表现,及对不同网络层的特征表达能力的分析,选取将浅层特征与高层语义特征进行融合的方法 .该深度特征融合方法 基于Alexnet网络进行改进,依据误差权重对各层特征进行融合,并采用983张舌图像,对气虚质、痰湿质和湿热质三种体质类型的分类进行仿真实验.结果 相比传统特征提取与原始深度网络,本文方法 的准确率由传统分类方法 的54.3%提高到了77%.结论 基于深度特征融合的方法 将浅层特征与深度特征融合,充分表达了图像的语义信息,对中医辅助辨识、临床、教学和科研具有极其重要的意义.
推荐文章
基于多特征融合的中医舌像检索研究
特征融合
中医
舌像检索
基于SSAE深度学习特征表示的高光谱遥感图像分类方法
高光谱遥感图像分类
堆叠稀疏自动编码器
深度学习
特征表示
支持向量机
基于深度学习的多模态医学图像融合方法研究进展
医学图像
图像融合
深度学习
卷积神经网络
深度信念网络
基于颜色通道融合特征的现勘图像分类算法
现勘图像分类
颜色通道
特征提取
特征融合
训练分类器
实验分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于舌图像深度特征融合的中医体质分类方法研究
来源期刊 北京生物医学工程 学科 医学
关键词 卷积神经网络 特征融合 舌图像 体质类型分类 中医
年,卷(期) 2020,(3) 所属期刊栏目 论著
研究方向 页码范围 221-226
页数 6页 分类号 R318.04
字数 3345字 语种 中文
DOI 10.3969/j.issn.1002-3208.2020.03.001.
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张新峰 北京工业大学信息学部 50 1027 14.0 31.0
2 胡广芹 北京工业大学信息学部 33 97 5.0 9.0
3 周浩 北京工业大学信息学部 4 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (116)
共引文献  (1322)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(3)
  • 参考文献(0)
  • 二级参考文献(3)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(17)
  • 参考文献(1)
  • 二级参考文献(16)
2017(12)
  • 参考文献(0)
  • 二级参考文献(12)
2018(6)
  • 参考文献(4)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
特征融合
舌图像
体质类型分类
中医
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京生物医学工程
双月刊
1002-3208
11-2261/R
16开
北京安定门外安贞医院
1981
chi
出版文献量(篇)
2829
总下载数(次)
13
总被引数(次)
15960
论文1v1指导