基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以黑龙江省哈尔滨市阿城区为研究区域,多时相16 m空间分辨率高分一号(GF-1)卫星宽覆盖(Wide field of view,WFV)影像为数据源,选择归一化植被指数(Normalized difference vegetation index,NDVI)、增强植被指数(Enhanced vegetation index,EVI)、归一化水指数(Normalized difference water index,NDWI)、比值植被指数(Ratio Vegetation Index,RVI)4种植被指数,构建植被指数时间序列,分析作物特征曲线,结合实地样本数据,采用支持向量机(Support vector machine,SVM)分类器对研究区内主要农作物玉米、水稻和大蒜/白菜实施分类.针对SVM分类器分类精度较低问题,引入自适应变异粒子群算法(Adaptive mutation particle swarm optimization,AMPSO)优化SVM,克服传统SVM参数选择主观性,进而提升分类器分类精度.结果表明,玉米和水稻生育期与大蒜/白菜差异较大,易区分;玉米与水稻生育期接近,光谱信息相似,区分难度较大,但光谱指数增长与回落趋势不同,借助NDVI、RVI和EVI可实现有效区分.改进后的AMPSO-SVM分类器,分类效果相比于SVM明显提升,确定核参数为0.135,惩罚因子为221.67时,分类效果最佳,总体分类精度达到94.39%,Kappa系数为0.9287,比SVM分类器,分类精度提升3.48%,Kappa系数提高0.0436.研究可为大区域农作物种植结构提取提供参考与借鉴.
推荐文章
基于改进SVM算法的植物叶片分类研究
植物叶片分类
布谷鸟搜索算法
支持向量机
基于改进PSO-SVM算法的电能质量扰动分类
支持向量机(SVM)
小波变换
粒子群算法(PSO)
电能质量
分类
基于改进的SVM分类器的医学图像分类新方法
改进的支持向量机方法
粗糙集
乳腺X光图像
基于改进KPCA与SVM的题名分类研究
题名分类
核主成分分析
数据降维
特征提取
数据挖掘
模式识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进SVM算法的典型作物分类方法研究
来源期刊 东北农业大学学报 学科 农学
关键词 种植结构提取 遥感 分类精度 植被指数 分类器
年,卷(期) 2020,(7) 所属期刊栏目 研究报告
研究方向 页码范围 77-85
页数 9页 分类号 P237|S29
字数 5632字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 苏中滨 东北农业大学电气与信息学院 84 466 13.0 17.0
2 贾银江 东北农业大学电气与信息学院 22 194 9.0 13.0
3 孔庆明 东北农业大学电气与信息学院 9 58 4.0 7.0
4 姜涛 东北农业大学电气与信息学院 12 72 4.0 8.0
5 施玉博 2 0 0.0 0.0
6 张萧誉 东北农业大学电气与信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (231)
共引文献  (129)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(3)
  • 参考文献(1)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(7)
  • 参考文献(0)
  • 二级参考文献(7)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(10)
  • 参考文献(0)
  • 二级参考文献(10)
2007(10)
  • 参考文献(0)
  • 二级参考文献(10)
2008(16)
  • 参考文献(0)
  • 二级参考文献(16)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(15)
  • 参考文献(0)
  • 二级参考文献(15)
2011(13)
  • 参考文献(0)
  • 二级参考文献(13)
2012(18)
  • 参考文献(1)
  • 二级参考文献(17)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(15)
  • 参考文献(1)
  • 二级参考文献(14)
2015(41)
  • 参考文献(4)
  • 二级参考文献(37)
2016(18)
  • 参考文献(1)
  • 二级参考文献(17)
2017(19)
  • 参考文献(4)
  • 二级参考文献(15)
2018(13)
  • 参考文献(1)
  • 二级参考文献(12)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
种植结构提取
遥感
分类精度
植被指数
分类器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东北农业大学学报
月刊
1005-9369
23-1391/S
大16开
哈尔滨市木材街59号
14-47
1957
chi
出版文献量(篇)
4521
总下载数(次)
9
总被引数(次)
44139
论文1v1指导