作者:
原文服务方: 工业仪表与自动化装置       
摘要:
提出了一种基于SVM-AdaBoost算法的行人检测方法。该方法是通过改进和扩展Haar-like特征值,对AdaBoost级联分类器的算法加以改进,使用SVM作为AdaBoost的弱分类器,通过选择确定合适的核函数参数,提高分类精度,减少训练时间。实验结果表明,这种行人检测方法性能稳定,实时性和鲁棒性均优于传统的行人检测方法。
推荐文章
基于Adaboost算法的实时行人检测系统
行人检测
Adaboost算法
矩形特征
智能视频监控
基于SVM-Adaboost的中文组块分析
中文组块分析
Adaboost
支持向量机
基于双阈值运动区域分割的AdaBoost行人检测算法
双阈值运动区域分割
AdaBoost学习算法
Haar-like弱矩形特征
强分类器
基于AdaBoost算法的易拉罐检测方法
Adaboost算法
Haar特征
LBP特征
检测器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SVM-AdaBoost算法的行人检测方法
来源期刊 工业仪表与自动化装置 学科
关键词 行人检测 AdaBoost算法 SVM算法
年,卷(期) 2016,(4) 所属期刊栏目 信息与动态
研究方向 页码范围 117-120
页数 4页 分类号 TP301.6
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张莉 11 41 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (55)
共引文献  (86)
参考文献  (3)
节点文献
引证文献  (11)
同被引文献  (18)
二级引证文献  (6)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(7)
  • 引证文献(5)
  • 二级引证文献(2)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人检测
AdaBoost算法
SVM算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工业仪表与自动化装置
双月刊
1000-0682
61-1121/TH
大16开
1971-01-01
chi
出版文献量(篇)
3676
总下载数(次)
0
总被引数(次)
18688
论文1v1指导