基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的多标记学习任务要求训练数据拥有完整的或者至少部分的真实标记,而真实标记耗费昂贵并且难以获取.不同于由昂贵受限的专家标注真实标记,众包环境下,多标记任务被分配给多个容易获取的非专家标注,学习目标是从有错误的非专家标注中估计样本的真实标记.这一问题的关键在于如何融合非专家标注.以往的众包学习主要集中在单标记任务上,忽视了多标记任务的标记相关性;而多标记任务上的众包工作集中在局部标记相关性的利用如标记共同出现的概率,标记间条件相关性,其估计很敏感地受到标记数量和质量的影响.考虑到多标记任务上多个标注者的标注结果整体上存在低秩结构关系,提出一种基于低秩张量矫正的方法.首先,将标注结果组织成三维的张量(样本,标记,标注者),用低秩张量补全的方法对收集到的标注做预处理,以同时达到两个目的:1)优化已有标注;2)补全标注者在其未标注的标记上的标注结果.然后,对所有标注融合,测试了3种融合方法,分别从不同的方面考虑标注的置信度.真实数据上的实验结果验证了所提方法的有效性.
推荐文章
基于多Agent的众包任务推荐系统设计
多Agent
众包任务
推荐系统
系统设计
仿真
NetLogo5.0.5
多标记学习研究综述
多标记学习
机器学习
问题转换
算法改进
评估措施
构建新包空间的多示例学习方法
多示例学习
反向传播算法
粗糙集
K均值聚类
新空间
空间众包中的位置隐私保护技术综述
空间众包
隐私保护
k-匿名
差分隐私
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多标记众包学习
来源期刊 软件学报 学科 工学
关键词 多标记学习 众包 低秩 张量近似 融合
年,卷(期) 2020,(5) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 1497-1510
页数 14页 分类号 TP181
字数 10124字 语种 中文
DOI 10.13328/j.cnki.jos.005673
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1966(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多标记学习
众包
低秩
张量近似
融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导