针对城市需水量预测中时间序列的非线性特性及传统BP网络预测收敛速度慢易陷入局部极小值等问题,将Chaos理论和BP神经网络理论相结合,提出了一种基于Chaos-BP理论的城市短期需水量COBP(Chaos Back Propagtion)预测模型.利用重构相空间的嵌入维数确定COBP网络的结构,通过混沌优化搜索,找到BP神经网络权值的全局最优值,并对其输出的"尖点"预测值进行混沌参数控制,实现城市短期需水量的预测.仿真分析表明,与传统预测模型相比,COBP预测模型所需训练数据样本少,收敛速度快、易达到全局最小值,预测结果整体误差的指标良好,呈现良好的综合预测性能.