基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前的宽度学习系统(Broad learning system,BLS)通过所建立的一系列映射节点和增强节点来形成联合节点.因为联合节点与输出层的线性连接,网络权值可以用求解伪逆的方法快速求得,避免了耗时的训练过程,从而成为快速而高效的学习方法.然而在追求高精度结果的过程中,BLS对于增强节点数量的需求过于巨大,容易造成过拟合问题.为此,本文提出了基于函数链神经网络(Functional?link neural network,FLNN)的深度分类器(FLNN based deep classifier,FLNNDC),旨在提供一种更加简单却又不失精度的BLS变体结构.FLNNDC将几个轻量级的BLS子系统堆积成栈式结构,每一个轻量级的BLS子系统随机选择一部分映射节点生成增强节点,而不是全部映射节点.和原宽度结构相比,在几个主流数据集上的实验结果表明本文所提出的FLNNDC分类器具有网络结构更小且学习速度更快的优势.
推荐文章
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于深度卷积神经网络的织物花型分类
深度卷积神经网络
织物花型
图像分析
基于改进sigmoid激活函数的深度神经网络训练算法研究
深度神经网络
残差衰减
sigmoid激活函数
用于电磁兼容预测的函数链神经网络
模糊测度
函数链神经网络
局部收敛
电磁兼容预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于函数链神经网络的深度分类器
来源期刊 南京航空航天大学学报 学科 工学
关键词 函数链神经网络 宽度学习 栈式结构 深度学习
年,卷(期) 2020,(5) 所属期刊栏目
研究方向 页码范围 736-745
页数 10页 分类号 TP18
字数 语种 中文
DOI 10.16356/j.1005⁃2615.2020.05.009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (24)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1972(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
函数链神经网络
宽度学习
栈式结构
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京航空航天大学学报
双月刊
1005-2615
32-1429/V
大16开
南京市御道街29号1016信箱
28-140
1956
chi
出版文献量(篇)
3509
总下载数(次)
9
总被引数(次)
36115
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导