基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 利用深度卷积神经网络(deep convolutional neural network,DCNN)构建的非开关型随机脉冲噪声(random-valued impulse noise,RVIN)降噪模型在降噪效果和执行效率上均比主流的开关型RVIN降噪算法更有优势,但在实际应用中,这类基于训练(数据驱动)的降噪模型,其性能却受制于能否对待降噪图像受噪声干扰的严重程度进行准确的测定(即存在数据依赖问题).为此,提出了一种基于浅层卷积神经网络的快速RVIN噪声比例预测(noise ratio estimation,NRE)模型.方法 该预测模型的主要任务是检测待降噪图像中的噪声比例值并将其作为反映图像受噪声干扰严重程度的指标,依据NRE预测模型的检测结果可以自适应调用相应预先训练好的特定区间DCNN降噪模型,从而快速且高质量地完成图像降噪任务.结果 分别在10幅常用图像和50幅纹理图像两个测试集上进行测试,并与现有的主流RVIN降噪算法中的检测模块进行对比.在常用图像测试集上,本文所提出的NRE预测模型的预测准确性最高.相比于噪声比例预测精度排名第2的算法,NRE预测模型在噪声比例预测值均方根误差上低0.6%~2.4%.在50幅纹理图像测试集上,NRE模型的均方根误差波动范围最小,表明其稳定性最好.通过在1幅大小为512×512像素图像上的总体平均执行时间来比较各个算法执行效率的优劣,NRE模型执行时间仅为0.02 s.实验数据表明:所提出的NRE预测模型在受各种不同噪声比例干扰的自然图像上均可以快速而稳定地测定图像中受RVIN噪声干扰的严重程度,非盲的DCNN降噪模型与其联用后即可无缝地转化为盲降噪算法.结论 本文RVIN噪声比例预测模型在各个噪声比例下具有鲁棒的预测准确性,与基于DCNN的非开关型RVIN深度降噪模型配合使用后能妥善解决DCNN网络模型固有的数据依赖问题.
推荐文章
比例可加模型的参数估计
比例可加模型
局部线性方法
平均方法
回切方法
渐近正态性
卡尔曼熵值模型的网络安全态势估计
关联度
回归方程
安全估计
测量模型
基于攻击图模型的网络可能入侵估计研究
网络攻击
攻击图
攻击模型
CNN-ELM混合短文本分类模型
文本分类
卷积神经网络
极速学习机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 浅层CNN网络构建的噪声比例估计模型
来源期刊 中国图象图形学报 学科 工学
关键词 随机脉冲噪声 噪声比例估计 浅层卷积神经网络 非逐点模式 执行效率 盲降噪
年,卷(期) 2020,(7) 所属期刊栏目 图像处理和编码
研究方向 页码范围 1344-1355
页数 12页 分类号 TP391
字数 8100字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐少平 南昌大学信息工程学院 85 417 11.0 17.0
2 林珍玉 南昌大学信息工程学院 7 1 1.0 1.0
3 李崇禧 南昌大学信息工程学院 11 7 1.0 2.0
4 崔燕 南昌大学信息工程学院 4 0 0.0 0.0
5 刘蕊蕊 南昌大学信息工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (180)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(6)
  • 参考文献(3)
  • 二级参考文献(3)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
随机脉冲噪声
噪声比例估计
浅层卷积神经网络
非逐点模式
执行效率
盲降噪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导