作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对Kmeans算法初始聚类中心选择及聚类结果需人工解读的问题,提出对MODIS数据(一般取波段26)使用Otsu法确定出云和非云集合,分别取两类集合中最接近均值的点作为Kmeans算法的初始聚类中心,并根据初始聚类中心的类别确定出聚类结果的类别.解决了传统Kmeans算法中初始聚类中心随机选取造成的误差和聚类结果需人工解读的问题,实现了自动云检测算法,实验结果验证了该方法的有效性.
推荐文章
基于MODIS影像的夜间云检测算法研究
夜间云检测
热红外
MODIS
南北地震构造带
多特征和APSO-QNN相结合的语音端点检测算法
端点检测
加速粒子群优化
量子神经网络
正确率
鲁棒性
超像素和阈值分割相结合的显著目标检测算法
显著目标检测
超像素分割
阈值分割
感兴趣区域
结合SVM与免疫遗传算法设计IDS的检测算法
网络安全
入侵检测
支持向量机
免疫遗传算法
算法设计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Kmeans与Otsu相结合的MODIS云检测算法
来源期刊 地理空间信息 学科 地球科学
关键词 Kmeans聚类 Otsu 云检测
年,卷(期) 2020,(4) 所属期刊栏目 技术热点研究
研究方向 页码范围 31-33
页数 3页 分类号 P237
字数 1605字 语种 中文
DOI 10.3969/j.issn.1672-4623.2020.04.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 向培素 西南民族大学电气信息工程学院 16 55 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (66)
共引文献  (60)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(3)
  • 参考文献(0)
  • 二级参考文献(3)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Kmeans聚类
Otsu
云检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地理空间信息
月刊
1672-4623
42-1692/P
大16开
湖北省武汉市武昌中南一路50号湖北省测绘局地理信息局航测楼二楼
2003
chi
出版文献量(篇)
5778
总下载数(次)
16
总被引数(次)
25892
论文1v1指导