基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
[目的]利用深度卷积神经网络对水稻田杂草进行准确、高效、无损识别,得出最优的网络模型,为水稻田种植管理以及无人机变量喷施提供理论依据.[方法]以水稻田杂草为主要研究对象,利用CCD感光相机采集杂草图像样本,构建水稻田杂草数据集(PFMW).利用多种结构的深度卷积神经网络对PFMW数据集进行特征的自动提取,并进行建模与试验.[结果]在各深度模型对比试验中,VGG16模型取得了最高精度,其在鬼针草、鹅肠草、莲子草、千金子、鳢肠和澎蜞菊6种杂草中的F值分别为0.957、0.931、0.955、0.955、0.923和0.992,其平均F值为0.954.在所设置的深度模型优化器试验中,VGG16-SGD模型取得了最高精度,其在上述6种杂草中的F值分别为0.987、0.974、0.965、0.967、0.989和0.982,其平均F值为0.977.在PFMW数据集的样本类别数量均衡试验中,无失衡杂草数据集训练出来的VGG16深度模型的准确率为0.900,而16.7%、33.3%和66.6%类别失衡的数据集训练的模型准确率分别为0.888、0.866和0.845.[结论]利用机器视觉能够准确识别水稻田杂草,这对于促进水稻田精细化耕作以及无人机变量喷施等方面具有重要意义,可以有效地协助农业种植过程中的杂草防治工作.
推荐文章
水稻田杂草的识别与防除
杂草
水稻田
识别
防除
基于深度卷积神经网络的车型识别研究
深度学习
卷积神经网络
支持向量机
高速公路
车型识别
基于深度卷积自编码神经网络的手写数字识别研究
卷积自编码神经网络
双线性插值
手写数字识别
深度学习
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积神经网络的水稻田杂草识别研究
来源期刊 华南农业大学学报 学科 农学
关键词 机器视觉 稻田杂草 深度卷积神经网络 模型优化器
年,卷(期) 2020,(6) 所属期刊栏目 研究论文
研究方向 页码范围 75-81
页数 7页 分类号 S511|TP183
字数 语种 中文
DOI 10.7671/j.issn.1001-411X.202007029
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 岳学军 2 0 0.0 0.0
2 王林惠 2 0 0.0 0.0
3 洪金宝 2 0 0.0 0.0
4 彭文 1 0 0.0 0.0
5 兰玉彬 1 0 0.0 0.0
6 程子耀 1 0 0.0 0.0
7 岑振钊 1 0 0.0 0.0
8 卢杨 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (86)
共引文献  (125)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1961(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(2)
  • 参考文献(0)
  • 二级参考文献(2)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(5)
  • 参考文献(2)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(2)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(7)
  • 参考文献(2)
  • 二级参考文献(5)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(9)
  • 参考文献(2)
  • 二级参考文献(7)
2017(9)
  • 参考文献(1)
  • 二级参考文献(8)
2018(11)
  • 参考文献(3)
  • 二级参考文献(8)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器视觉
稻田杂草
深度卷积神经网络
模型优化器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华南农业大学学报
双月刊
1001-411X
44-1110/S
大16开
广州五山华南农业大学学报编辑部
1959
chi
出版文献量(篇)
2705
总下载数(次)
5
总被引数(次)
47288
论文1v1指导