基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对划分聚类算法中聚类数K的取值工作量较大的问题,提出一种新的Canopy+算法.该算法可实现对聚类个数K的预判,在保证准确率的前提下提高聚类工作效率.
推荐文章
基于划分的K-均值初始聚类中心优化算法
K-均值算法
中心点划分
聚类分析
基于密度的K-means聚类中心选取的优化算法
K-均值
数据挖掘
聚类中心
垂直中点
密度
基于划分的数据挖掘K-means聚类算法分析
数据挖掘
聚类分析
K-means聚类算法
聚类中心选取
K-means算法改进
初始中心点
基于MapReduce的K-means聚类算法的优化
K均值算法
抽样
Canopy算法
最大最小距离法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Canopy在划分聚类算法中对K选取的优化
来源期刊 吉林大学学报(理学版) 学科 工学
关键词 Canopy算法 划分聚类 聚类数 阈值
年,卷(期) 2020,(3) 所属期刊栏目 计算机科学
研究方向 页码范围 634-638
页数 5页 分类号 TP39
字数 1993字 语种 中文
DOI 10.13413/j.cnki.jdxblxb.2019284
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李闯 吉林师范大学计算机学院 31 108 5.0 9.0
2 许佩迪 吉林师范大学计算机学院 3 1 1.0 1.0
3 崔文超 吉林师范大学计算机学院 7 4 1.0 1.0
4 王海燕 长春大学计算机科学技术学院 4 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (85)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(12)
  • 参考文献(0)
  • 二级参考文献(12)
2012(11)
  • 参考文献(1)
  • 二级参考文献(10)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Canopy算法
划分聚类
聚类数
阈值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
吉林大学学报(理学版)
双月刊
1671-5489
22-1340/O
大16开
长春市南湖大路5372号
12-19
1955
chi
出版文献量(篇)
4812
总下载数(次)
6
总被引数(次)
24333
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导