基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
非下采样剪切波变换(NSST)域中低频子带的融合需要人工给定融合模式,因此未能充分捕获源图像的空间连续性和轮廓细节信息.针对上述问题,提出了基于深度卷积神经网络的红外与可见光图像融合算法.首先,使用孪生双通道卷积神经网络学习NSST域低频子带的特征来输出衡量子带空间细节信息的特征图.然后,根据高斯滤波处理的特征图设计了基于局部相似性的测量函数来自适应地调整NSST域低频子带的融合模式.最后,根据NSST域高频子带的方差、局部区域能量以及可见度特征来自适应地设置脉冲耦合神经网络参数完成NSST域高频子带的融合.实验结果表明:该算法QAB/F指标略弱于对比算法,但SF、SP、SSIM以及VIFF指标分别提高了约50.42%、14.25%、7.91%以及61.67%,有效地解决了低频子带融合模式给定的问题,同时又克服了手动设置PCNN参数的缺陷.
推荐文章
基于CNN与直方图规定化的红外与低照度可见光图像融合
可见光图像
红外图像
图像融合
直方图规定化
卷积神经网络
融合红外特征的可见光图像目标检测算法研究
红外特征
可见光目标检测
注意力机制
自适应融合
金字塔采样
基于双边滤波和NSST的红外与可见光图像融合
图像融合
双边滤波
高斯滤波
非下采样剪切波变换
基于红外可见光融合图像的车辆定位方法
车辆
定位方法
视觉
融合图像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的红外与可见光图像融合
来源期刊 红外技术 学科 工学
关键词 图像融合 卷积神经网络 参数自适应脉冲耦合神经网络 NSST变换
年,卷(期) 2020,(7) 所属期刊栏目 图像处理与仿真
研究方向 页码范围 660-669
页数 10页 分类号 TP751.1
字数 6145字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杜庆治 昆明理工大学信息工程与自动化学院 64 103 4.0 6.0
2 董安勇 昆明理工大学信息工程与自动化学院 3 3 1.0 1.0
3 苏斌 2 3 1.0 1.0
4 赵文博 2 3 1.0 1.0
5 于闻 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (121)
共引文献  (19)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(11)
  • 参考文献(1)
  • 二级参考文献(10)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(10)
  • 参考文献(0)
  • 二级参考文献(10)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(17)
  • 参考文献(2)
  • 二级参考文献(15)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(21)
  • 参考文献(0)
  • 二级参考文献(21)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(7)
  • 参考文献(3)
  • 二级参考文献(4)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像融合
卷积神经网络
参数自适应脉冲耦合神经网络
NSST变换
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
红外技术
月刊
1001-8891
53-1053/TN
大16开
昆明市教场东路31号《红外技术》编辑部
64-26
1979
chi
出版文献量(篇)
3361
总下载数(次)
13
总被引数(次)
30858
论文1v1指导