基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
计算机辅助语音训练系统需要检测非母语者的错误发音,并提供详细的指导性反馈,有助于第二语言学习者更有效地提高发音水平.利用深度全序列卷积神经网络(Deep full convolutional neural network,DFCNN)和链接时序分类(Connectionist temporal classification,CTC)技术,建立了一种用于发音偏误检测和诊断任务的端到端语音识别方法.该方法不需要音位信息,也不需要强制对齐,以扩展声韵母为偏误基元,设计了64种偏误类型.实验结果表明,该方法能够有效地检测出错误发音,检测正确率为87.07%,错误拒绝率为7.83%,错误接收率为25.97%.
推荐文章
基于改进混合CTC/attention架构的端到端普通话语音识别
语音识别
链接时序分类
注意力机制
混合CTC/attention
端到端系统
从普通话水平测试视角分析普通话朗读教学
普通话朗读教学
表达技巧
语感
壮族学生普通话学习的难点及应对策略
壮族
学生
普通话
难点
策略
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于DFCNN-CTC端到端的藏族学生普通话发音偏误检测
来源期刊 西北师范大学学报(自然科学版) 学科 工学
关键词 发音偏误检测 卷积神经网络 链接时序分类 端到端
年,卷(期) 2020,(5) 所属期刊栏目 计算机与信息科学
研究方向 页码范围 49-53,108
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.16783/j.cnki.nwnuz.2020.05.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨鸿武 55 308 11.0 14.0
2 甘振业 11 43 4.0 6.0
3 周世华 1 0 0.0 0.0
4 曾浩 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (26)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
发音偏误检测
卷积神经网络
链接时序分类
端到端
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西北师范大学学报(自然科学版)
双月刊
1001-988X
62-1087/N
大16开
甘肃兰州安宁东路967号
54-53
1942
chi
出版文献量(篇)
3180
总下载数(次)
2
总被引数(次)
17931
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导