视频帧中复杂的环境背景、照明条件等与行为无关的视觉信息给行为空间特征带来了大量的冗余和噪声,一定程度上影响了行为识别的准确性.针对这一点,本文提出了一种循环区域关注单元以捕捉空间特征中与行为相关的区域视觉信息,并根据视频的时序特性又提出了循环区域关注模型.其次,本文又提出了一种能够突显整段行为视频序列中较为重要帧的视频帧关注模型,以减少异类行为视频序列间相似的前后关联给识别带来的干扰.最后,提出了一个能够端到端训练的网络模型:基于循环区域关注和视频帧关注的视频行为识别网络(Recurrent Region Attention and Video Frame Attention based video action recognition Network,RFANet).在两个视频行为识别基准UCF101数据集和HM-DB51数据集上的实验表明,本文提出的端到端网络RFANet能够可靠地识别出视频中行为的所属类别.受双流结构启发,本文构建了双模态RFANet网络.在相同的训练环境下,双模态RFANet网络在两个数据集上达到了最优的性能.