基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
作为社会媒体文本情感分析的重要研究课题之一,跨领域文本情感分类旨在利用源领域资源或模型迁移地服务于目标领域的文本情感分类任务,其可以有效缓解目标领域中带标签数据不足问题.从3个角度对跨领域文本情感分类方法行了归纳总结:(1)按照目标领域中是否有带标签数据,可分为直推式和归纳式情感迁移方法;(2)按照不同情感适应性策略,可分为实例迁移方法、特征迁移方法、模型迁移方法、基于词典的方法、联合情感主题方法以及图模型方法等;(3)按照可用源领域个数,可分为单源和多源跨领域文本情感分类方法.此外,还介绍了深度迁移学习方法及其在跨领域文本情感分类的最新应用成果.最后,围绕跨领域文本情感分类面临的关键技术问题,对可能的突破方向进行了展望.
推荐文章
跨领域中文评论的情感分类研究
跨领域
情感分类
知网
有监督机器学习方法
支持向量机
一种改进EM算法的跨领域情感分类方法
跨领域情感分类
EM算法
特征迁移
对抗长短时记忆网络的跨语言 文本情感分类方法
文本情感
跨语言
对抗
长短时记忆网络
共享特征
基于word2vec的跨领域情感分类方法
语义特征
共现特征
词向量
跨领域情感分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 跨领域文本情感分类研究进展
来源期刊 软件学报 学科 工学
关键词 跨领域文本情感分类 领域适应 迁移学习 研究进展
年,卷(期) 2020,(6) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 1723-1746
页数 24页 分类号 TP391
字数 22183字 语种 中文
DOI 10.13328/j.cnki.jos.006029
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵传君 山西财经大学信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (100)
共引文献  (584)
参考文献  (38)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(11)
  • 参考文献(0)
  • 二级参考文献(11)
2008(9)
  • 参考文献(0)
  • 二级参考文献(9)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(22)
  • 参考文献(3)
  • 二级参考文献(19)
2011(12)
  • 参考文献(2)
  • 二级参考文献(10)
2012(7)
  • 参考文献(4)
  • 二级参考文献(3)
2013(12)
  • 参考文献(8)
  • 二级参考文献(4)
2014(12)
  • 参考文献(1)
  • 二级参考文献(11)
2015(13)
  • 参考文献(9)
  • 二级参考文献(4)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(5)
  • 参考文献(4)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
跨领域文本情感分类
领域适应
迁移学习
研究进展
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导