本文借鉴具有自适应特性的一维局域均值分解算法(Local Mean Decomposition,BLMD),提出了二维局域均值分解算法(Bidimensional Local Mean Decomposition,BLMD).二维局域均值分解算法可以将源图像分解成多个二维生产函数分量(Bidimensional Product Function,BPF).思路为:先通过可变邻域窗法来获得分解过程中的极值点,而后利用分形理论对图像进行插值操作,并得到相应的均值曲面的等信息,再对筛分过程中相邻曲面之间在零值平面投影上不重合极值点数目进行统计和分析,给出符合图像本身特性的停止条件,保证分解得到的BPF分量能够真实反映图像的某类特征信息.最后,在此基础上形成本文提出的二维局域均值分解算法.通过实证分析表明,本方法可以自适应对图像进行分解.