基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了在攻击形式多样化、入侵数据海量及多维化的环境中快速、准确地识别网络攻击,提出了一种融合Fisher-PCA特征提取与深度学习的入侵检测算法.通过Fisher特征选择算法选出重要的特征组成特征子集,然后基于主成分分析法(Principal component analysis,PCA)将特征子集进行降维,提取出了分类能力强的特征集.构建了一种新的深度神经网络(Deep neural networks,DNN)模型对网络攻击数据和正常数据进行识别与分类.在KDD99数据集上进行实验,结果表明:与传统的人工神经网络(Artificial neural network,ANN)和支持向量机(Support vector machine,SVM)算法相比,这种入侵检测算法的准确率分别提高了12.63%和6.77%,误报率由原来的2.31%和1.96%降为0.28%;与DBN4和PCA-CNN算法相比,在准确率和检测率保持基本相同的同时有着更低的误报率.
推荐文章
基于深度迁移学习的网络入侵检测
深度自编码器
迁移学习
入侵检测
嵌入层
标签层
基于PCA的PSO-BP入侵检测研究
主成分分析
粒子群优化
BP神经网络
入侵检测
基于PCA的GABP神经网络入侵检测方法
主成分分析
遗传神经网络
入侵检测系统
仿真实验
基于深度学习的入侵检测算法
深度学习
网络安全
入侵检测
卷积神经网络
可视化处理
KDD CUP99
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Fisher-PCA和深度学习的入侵检测方法研究
来源期刊 数据采集与处理 学科 工学
关键词 深度学习 入侵检测 特征提取 主成分分析 KDD99
年,卷(期) 2020,(5) 所属期刊栏目
研究方向 页码范围 956-964
页数 9页 分类号 TP393.0
字数 语种 中文
DOI 10.16337/j.1004-9037.2020.05.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 任午令 9 43 4.0 6.0
2 张鑫杰 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (59)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(8)
  • 参考文献(0)
  • 二级参考文献(8)
2017(9)
  • 参考文献(3)
  • 二级参考文献(6)
2018(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
入侵检测
特征提取
主成分分析
KDD99
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
论文1v1指导