基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对降水量影响因素众多,是一种复杂的非平稳、非线性且存在噪声问题的时间序列的特点,提出一种基于小波包分解的LS-SVM与ARIMA组合模型的年降水量预测方法.利用小波包将降水序列分解成低频趋势序列和高频细节序列;应用LS-SVM模型预测低频趋势序列,ARIMA模型预测高频细节序列;将两个模型的预测结果叠加,得到年降水量的预测值.实例验证表明:小波包对时间序列的分解比小波分解更精细,组合模型预测能够全面的提取降水序列中所包含的信息,更好地反映年降水量随时间变化规律,提高了年降水量预测的精准度,为降水量预测提供一种新方法.
推荐文章
基于小波包分析和LS-SVM的柴油机故障诊断方法
柴油机
最小二乘支持向量机
故障诊断
小波包
基于小波包分解和EMD-SVM的轴承故障诊断方法
故障诊断
小波包分解
轴承
支持向量机
基于ARIMA和LS-SVM组合模型的短期负荷预测
短期负荷预测
ARIMA模型
LS-SVM模型
偏差修正
基于小波分析的ARIMA与LSSVM组合的高炉煤气预测
高炉煤气
小波分析
最小二乘支持向量机
ARIMA模型
组合预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波包分解的LS-SVM-ARIMA组合降水预测
来源期刊 南水北调与水利科技 学科 工学
关键词 降水预测 小波包分解 LS-SVM模型 ARIMA模型 金沙县
年,卷(期) 2020,(6) 所属期刊栏目 水文水资源
研究方向 页码范围 71-77
页数 7页 分类号 TV125
字数 语种 中文
DOI 10.13476/j.cnki.nsbdqk.2020.0116
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (204)
共引文献  (174)
参考文献  (20)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1945(1)
  • 参考文献(0)
  • 二级参考文献(1)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(10)
  • 参考文献(0)
  • 二级参考文献(10)
2006(13)
  • 参考文献(1)
  • 二级参考文献(12)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(11)
  • 参考文献(1)
  • 二级参考文献(10)
2011(17)
  • 参考文献(0)
  • 二级参考文献(17)
2012(11)
  • 参考文献(2)
  • 二级参考文献(9)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(16)
  • 参考文献(0)
  • 二级参考文献(16)
2015(17)
  • 参考文献(1)
  • 二级参考文献(16)
2016(24)
  • 参考文献(4)
  • 二级参考文献(20)
2017(12)
  • 参考文献(4)
  • 二级参考文献(8)
2018(13)
  • 参考文献(1)
  • 二级参考文献(12)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
降水预测
小波包分解
LS-SVM模型
ARIMA模型
金沙县
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南水北调与水利科技
双月刊
1672-1683
13-1334/TV
石家庄市泰华街310号
chi
出版文献量(篇)
4208
总下载数(次)
4
总被引数(次)
23645
论文1v1指导