基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的脉搏信号亚健康检测主要采取手工提取特征,这类方法容易受人为主观意志的影响,从而导致亚健康检测的识别率较低.针对这一问题,将深度残差网络方法应用于信号特征提取领域,提出一种适用于脉搏信号亚健康检测的深度残差网络模型.首先,针对实验中存在的脉搏信号样本数量不足的问题,在生成式对抗网络的基础上提出了一种脉搏信号的生成方法,对脉搏信号数据集进行扩增;然后针对脉搏信号的特点,改进深度残差网络,引入一维卷积,构建适用于脉搏信号亚健康的检测模型;最后,利用扩增之后的数据集训练该模型,对人体亚健康状态进行检测.实验结果表明,该方法能够有效地区分健康与亚健康状态,与现有的方法相比,可以取得更高的识别率.
推荐文章
一种改进的深度残差网络行人检测方法
行人识别
深度残差网络
YOLOv2
卷积神经网络
深度学习
组合深度残差网络手势识别
手势识别
残差网络
肤色模型
深度学习
迁移学习
人机交互
基于深度残差网络的脱机手写汉字识别研究
手写汉字识别
深度学习
深度残差网络
End-to-End
卷积神经网络
基于深度残差网络ResNet的废料瓶分类系统
废料瓶分类
Opencv
深度学习
ResNet18
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度残差网络在脉搏信号亚健康检测中的应用
来源期刊 计算机技术与发展 学科 工学
关键词 生成式对抗网络 深度残差网络 脉搏信号 信号处理 亚健康
年,卷(期) 2020,(7) 所属期刊栏目 应用开发研究
研究方向 页码范围 109-114
页数 6页 分类号 TN911.7
字数 4746字 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.07.024
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 艾玲梅 陕西师范大学计算机科学学院 30 201 8.0 13.0
2 薛亚庆 陕西师范大学计算机科学学院 2 0 0.0 0.0
3 李天东 陕西师范大学计算机科学学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (89)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(5)
  • 参考文献(3)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
生成式对抗网络
深度残差网络
脉搏信号
信号处理
亚健康
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导