基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
异常检测用来预处理数据,挖掘异类数据信息,是数据挖掘的一种重要方法.近年来由于维度灾难问题,高维异常数据检测显得十分困难,针对上述问题提出一种基于自编码器和集成学习的半监督异常检测算法.首先利用自编码器降维,在编解码过程中异常数据的异常程度被增大,然后在AdaBoost提升框架中融合iforest、LOF、K-means算法,基于3种算法对于不同异常类型的敏感性,提升异常检测的准确性.选取UCI机器学习库中的高维异常数据集进行实验.实验结果表明,该模型的准确性相较于目前主流的异常检测算法有显著提升.
推荐文章
基于去噪卷积自编码器的色织 衬衫裁片缺陷检测
色织衬衫裁片
缺陷检测
卷积自编码器
图像重构
稀疏和标签约束半监督自动编码器的分类算法
分类
稀疏约束
标签约束
自动编码器
极限学习机
基于栈式降噪自编码器的协同过滤算法
推荐系统
协同过滤
深度学习
栈式降噪自编码器
基于稀疏自编码器和SVM的垃圾短信过滤
支撑矢量机
稀疏自编码器
短信
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自编码器和集成学习的半监督异常检测算法
来源期刊 计算机工程与科学 学科 工学
关键词 异常检测 提升框架 半监督 自编码器
年,卷(期) 2020,(8) 所属期刊栏目 人工智能与数据挖掘
研究方向 页码范围 1440-1447
页数 8页 分类号 TP393
字数 6476字 语种 中文
DOI 10.3969/j.issn.1007-130X.2020.08.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 夏火松 武汉纺织大学管理学院 53 422 11.0 18.0
2 孙泽林 武汉纺织大学管理学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (40)
参考文献  (22)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(5)
  • 参考文献(4)
  • 二级参考文献(1)
2017(6)
  • 参考文献(0)
  • 二级参考文献(6)
2018(7)
  • 参考文献(4)
  • 二级参考文献(3)
2019(13)
  • 参考文献(13)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
异常检测
提升框架
半监督
自编码器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导