基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 目前文本到图像的生成模型仅在具有单个对象的图像数据集上表现良好,当一幅图像涉及多个对象和关系时,生成的图像就会变得混乱.已有的解决方案是将文本描述转换为更能表示图像中场景关系的场景图结构,然后利用场景图生成图像,但是现有的场景图到图像的生成模型最终生成的图像不够清晰,对象细节不足.为此,提出一种基于图注意力网络的场景图到图像的生成模型,生成更高质量的图像.方法 模型由提取场景图特征的图注意力网络、合成场景布局的对象布局网络、将场景布局转换为生成图像的级联细化网络以及提高生成图像质量的鉴别器网络组成.图注意力网络将得到的具有更强表达能力的输出对象特征向量传递给改进的对象布局网络,合成更接近真实标签的场景布局.同时,提出使用特征匹配的方式计算图像损失,使得最终生成图像与真实图像在语义上更加相似.结果 通过在包含多个对象的COCO-Stuff图像数据集中训练模型生成64×64像素的图像,本文模型可以生成包含多个对象和关系的复杂场景图像,且生成图像的Inception Score为7.8左右,与原有的场景图到图像生成模型相比提高了0.5.结论 本文提出的基于图注意力网络的场景图到图像生成模型不仅可以生成包含多个对象和关系的复杂场景图像,而且生成图像质量更高,细节更清晰.
推荐文章
结合引导解码和视觉注意力的图像语义描述模型
图像描述
多示例学习
引导解码
视觉注意力机制
基于通道分组注意力的无监督图像风格转换模型
无监督
通道注意力机制
图像风格转换
融入视觉常识和注意力的图像描述
图像描述
注意力机制
视觉常识
注意偏差
基于概率图模型的图像整体场景理解特征工程综述
特征工程
图像特征工程
图像特征
图像整体场景理解
概率图模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 图注意力网络的场景图到图像生成模型
来源期刊 中国图象图形学报 学科 工学
关键词 场景图生成图像 图注意力网络 场景布局 特征匹配 级联细化网络
年,卷(期) 2020,(8) 所属期刊栏目 图像理解和计算机视觉
研究方向 页码范围 1591-1603
页数 13页 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 兰红 66 377 11.0 16.0
2 刘秦邑 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (8)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
场景图生成图像
图注意力网络
场景布局
特征匹配
级联细化网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导