基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提升遥感图像超分辨率重建算法纹理细节信息还原能力,该文提出了一种基于特征空间感知损失深度残差网络的遥感图像超分辨率重建算法.该算法增加了深度残差网络中的残差块数量,在网络末端采用了亚像素卷积的方法,并在损失函数中增加了特征空间感知损失.在UCMerced_LandUse数据集上进行了训练,并在UCMerced_LandUse数据集和Draper Satellite Image Chronology数据集上进行了测试.测试结果证实了该算法与其他算法相比在峰值信噪比和结构相似性指数上均有一定的提高,证实了该算法较好的超分辨率重建效果与还原遥感图像纹理细节信息的能力.
推荐文章
全局重建和位置块残差补偿的人脸图像超分辨率算法
人脸图像
超分辨率
残差补偿
位置块
基于插值的遥感图像超分辨率重建
插值
遥感
亚像素
超分辨率重建
遥感图像超分辨率重建技术研究及地质解译应用
超分辨率重建
残差网络
遥感图像
地质解译
基于深度学习的辐射图像超分辨率重建方法
辐射图像
超分辨率重建
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 空间感知残差网络的遥感图像超分辨率重建
来源期刊 测绘科学 学科 地球科学
关键词 超分辨率重建 遥感图像 深度残差网络 亚像素卷积 特征空间感知损失
年,卷(期) 2020,(5) 所属期刊栏目 摄影测量学与遥感
研究方向 页码范围 49-55
页数 7页 分类号 P237
字数 语种 中文
DOI 10.16251/j.cnki.1009-2307.2020.05.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高爽 中国科学院微小卫星创新研究院 38 342 10.0 17.0
2 尹增山 中国科学院上海微系统与信息技术研究所 18 64 4.0 7.0
11 郭岑 中国科学院上海微系统与信息技术研究所 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (3)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超分辨率重建
遥感图像
深度残差网络
亚像素卷积
特征空间感知损失
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘科学
月刊
1009-2307
11-4415/P
大16开
北京市海淀区北太平路16号
2-945
1976
chi
出版文献量(篇)
7258
总下载数(次)
36
论文1v1指导