基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
煤矿机械齿轮传动系统在低速重载等恶劣工况下极易发生故障,齿轮箱部分尤为突出.因此展开对恶劣工况下的齿轮箱故障诊断研究具有重要的意义.以齿轮箱中齿轮为研究对象,通过提取与齿轮箱振动相关的故障特征,经过神经网络的学习训练实现对齿轮箱故障的分类.经检验,该诊断神经网络对齿轮箱故障有很高的辨识度.
推荐文章
基于RBF神经网络的齿轮箱故障诊断
BP神经网络
径向基函数神经网络
故障诊断
齿轮箱
带偏差单元递归神经网络齿轮箱故障诊断
坦克传动系统
齿轮箱
故障诊断
递归神经网络
齿轮箱故障诊断灰色神经网络模型的研究
齿轮箱
灰色神经网络
故障诊断
基于LVQ神经网络风电机组齿轮箱故障诊断研究
LVQ神经网络
BP神经网络
风电机组
齿轮箱
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络的齿轮箱故障诊断
来源期刊 煤矿机械 学科 工学
关键词 齿轮传动系统 齿轮箱 神经网络 故障诊断
年,卷(期) 2020,(4) 所属期刊栏目 故障·诊断
研究方向 页码范围 156-158
页数 3页 分类号 TH132.41
字数 语种 中文
DOI 10.13436/j.mkjx.202004053
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (6)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(10)
  • 参考文献(3)
  • 二级参考文献(7)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
齿轮传动系统
齿轮箱
神经网络
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤矿机械
月刊
1003-0794
23-1280/TD
大16开
哈尔滨市古香街30号
14-38
1980
chi
出版文献量(篇)
21080
总下载数(次)
49
论文1v1指导