作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目标检测是计算机视觉中的核心任务之一,在智能视频监控、自动化监测、工业检测等领域应用广泛.近些年来,随着深度学习的快速发展,基于深度卷积神经网络的目标检测算法逐渐替代了传统的目标检测算法,成为了该领域的主流算法.介绍了目标检测算法的常用数据集和性能评价指标,介绍了卷积神经网络的发展,重点分析比较了两阶段目标检测算法和单阶段目标检测算法,展望了基于深度卷积神经网络的目标检测算法未来的发展.
推荐文章
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
尺度无关的级联卷积神经网络人脸检测算法
级联卷积神经网络
空间金字塔池化
人脸检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度卷积神经网络的目标检测算法综述
来源期刊 计算机工程与应用 学科 工学
关键词 目标检测 深度学习 计算机视觉 卷积神经网络
年,卷(期) 2020,(17) 所属期刊栏目 热点与综述
研究方向 页码范围 12-23
页数 12页 分类号 TP183
字数 12267字 语种 中文
DOI 10.3778/j.issn.1002-8331.2005-0021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄健 西安科技大学通信与信息工程学院 21 66 4.0 6.0
2 张钢 西安科技大学通信与信息工程学院 2 9 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (146)
共引文献  (89)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(11)
  • 参考文献(0)
  • 二级参考文献(11)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(24)
  • 参考文献(1)
  • 二级参考文献(23)
2016(11)
  • 参考文献(0)
  • 二级参考文献(11)
2017(25)
  • 参考文献(2)
  • 二级参考文献(23)
2018(19)
  • 参考文献(3)
  • 二级参考文献(16)
2019(23)
  • 参考文献(8)
  • 二级参考文献(15)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
深度学习
计算机视觉
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导