作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对YOLO目标检测算法在小目标检测方面存在的不足,以及难以在嵌入式平台上达到实时性的问题,设计出了一种基于YOLO算法改进的dense_YOLO目标检测算法.该算法共分为2个阶段:特征提取阶段和目标检测回归阶段.在特征提取阶段,借鉴DenseNet结构的思想,设计了新的基于深度可分离卷积的slim-densenet特征提取模块,增强了小目标的特征传递,减少了参数量,加快了网络的传播速度.在目标检测阶段,提出自适应多尺度融合检测的思想,将提取到的特征进行融合,在不同的特征尺度上进行目标的分类和回归,提高了对小目标的检测准确率.实验结果表明:在嵌入式平台上,针对小目标,本文提出的dense_YOLO目标检测算法相较原YOLO算法mAP指标提高了7%,单幅图像检测时间缩短了15 ms,网络模型大小减少了90 MB,明显优于原算法.
推荐文章
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
深度卷积神经网络的目标检测算法综述
目标检测
深度学习
计算机视觉
卷积神经网络
尺度无关的级联卷积神经网络人脸检测算法
级联卷积神经网络
空间金字塔池化
人脸检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积神经网络的小目标检测算法
来源期刊 计算机工程与科学 学科 工学
关键词 目标检测 嵌入式平台 小目标 深度卷积神经网络 多尺度预测
年,卷(期) 2020,(4) 所属期刊栏目 图形与图像
研究方向 页码范围 649-657
页数 9页 分类号 TP391.4
字数 4910字 语种 中文
DOI 10.3969/j.issn.1007-130X.2020.04.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱明 中国科学院长春光学精密机械与物理研究所 228 2519 25.0 40.0
2 李航 中国科学院长春光学精密机械与物理研究所 12 57 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (20)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(10)
  • 参考文献(1)
  • 二级参考文献(9)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
嵌入式平台
小目标
深度卷积神经网络
多尺度预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导