基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
PVANet(performance vs accuracy network)卷积神经网络用于小目标检测的检测能力较弱.针对这一瓶颈问题,采用对PVANet网络的浅层特征提取层、深层特征提取层和HyperNet层(多层特征信息融合层)进行改进的措施,提出了一种适用于小目标物体检测的改进PVANet卷积神经网络模型,并在TT100K (Tsinghua-Tencent 100K)数据集上进行了交通标志检测算法验证实验.结果表明,所构建的卷积神经网络具有优秀的小目标物体检测能力,相应的交通标志检测算法可以实现较高的准确率.
推荐文章
应用深层卷积神经网络的交通标志识别
交通标志
识别
卷积神经网络
深度学习
基于多尺度卷积神经网络的交通标志识别
模式识别系统
交通标志识别
多尺度卷积神经网络
SoftMax分类器
基于卷积神经网络的实景交通标志识别
卷积神经网络
深度学习
交通标志识别
训练
基于轻量型卷积神经网络的交通标志识别
卷积神经网络
交通标识
图像增强
深度可分离卷积
激活函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的小目标交通标志检测算法
来源期刊 同济大学学报(自然科学版) 学科 工学
关键词 卷积神经网络 交通标志检测 计算机视觉 小目标检测
年,卷(期) 2019,(11) 所属期刊栏目 机械、车辆与能源工程
研究方向 页码范围 1626-1632
页数 7页 分类号 TP274+.5
字数 4553字 语种 中文
DOI 10.11908/j.issn.0253-374x.2019.11.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周苏 同济大学汽车学院 73 557 12.0 21.0
2 石繁槐 同济大学电子与信息工程学院 8 76 3.0 8.0
3 支雪磊 同济大学汽车学院 11 29 3.0 5.0
4 刘懂 同济大学汽车学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (19)
参考文献  (13)
节点文献
引证文献  (3)
同被引文献  (14)
二级引证文献  (0)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(5)
  • 参考文献(2)
  • 二级参考文献(3)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(7)
  • 参考文献(1)
  • 二级参考文献(6)
2018(9)
  • 参考文献(3)
  • 二级参考文献(6)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
交通标志检测
计算机视觉
小目标检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
同济大学学报(自然科学版)
月刊
0253-374X
31-1267/N
大16开
上海四平路1239号
4-260
1956
chi
出版文献量(篇)
6707
总下载数(次)
15
总被引数(次)
105464
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导