基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当训练样本不足时,传统深度学习算法在手写数字识别中会出现训练不稳定、识别精度较低等问题,提出了基于条件生成对抗网络的识别方法.首先,在条件生成对抗网络的基础上,利用生成器使用类别标签控制图像生成的优点,将生成器产生的图像样本作为训练数据,扩充数据集.同时,利用反卷积网络和卷积网络分别构成生成器和判别器的网络结构,去掉全连接层以提升模型稳定性.然后,引入条件批量归一化,利用它使用类别标签的优点,使网络学习更多的特征.最后,改进判别器为分类器,并提出新的损失函数,加快收敛速度,提高识别精度.实验结果表明,本文所提出的手写数字识别方法生成的图像质量更好,识别准确率更高,达到99.43%,为生成对抗网络及其变体在图像识别领域中的应用提供了参考.
推荐文章
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
基于生成对抗网络的遮挡表情识别
人脸表情识别
局部遮挡
人脸修复
生成对抗网络
卷积神经网络
基于条件生成对抗网络的漫画手绘图上色方法
漫画
手绘图
上色
深度学习
条件生成对抗网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于条件生成对抗网络的手写数字识别
来源期刊 液晶与显示 学科 工学
关键词 手写数字识别 条件生成对抗网络 条件批量归一化 图像生成
年,卷(期) 2020,(12) 所属期刊栏目 图像处理
研究方向 页码范围 1284-1290
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.37188/YJYXS20203512.1284
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴海滨 29 278 8.0 16.0
2 王爱丽 16 63 5.0 7.0
3 薛冬 1 0 0.0 0.0
4 王敏慧 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (11)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(9)
  • 参考文献(0)
  • 二级参考文献(9)
2018(13)
  • 参考文献(2)
  • 二级参考文献(11)
2019(4)
  • 参考文献(1)
  • 二级参考文献(3)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
手写数字识别
条件生成对抗网络
条件批量归一化
图像生成
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
液晶与显示
月刊
1007-2780
22-1259/O4
大16开
长春市东南湖大路3888号
12-203
1986
chi
出版文献量(篇)
3141
总下载数(次)
7
总被引数(次)
21631
论文1v1指导