基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统视频火灾检测方法依靠人工经验提取火焰特征,误报率高、鲁棒性差的特点,提出一种基于深度学习的视频火焰识别方法.该方法充分利用火焰的运动特征和颜色信息,先使用改进的五帧差法和自适应混合高斯建模法进行运动目标提取;再采用RGB-HSV混合颜色空间模型筛选出图像中可能的火焰像素区域;最后将以上两个步骤结合起来进行疑似火焰区域提取,并将疑似火焰区域图像传入预训练的AlexNet卷积神经网络模型进行火与非火的精确识别.通过对多种场景下火焰视频的测试结果表明,提出的方法具有较高的召回率、准确率和较低的误报率.
推荐文章
基于目标跟踪与深度学习的视频火焰识别方法
火焰检测
图像处理
卷积神经网络
多目标跟踪
基于深度学习的人体动作识别方法
深度信息
人体动作识别
深度学习
空间结构动态深度图
深度卷积神经网络
深度学习下智慧社区视频监控异常识别方法
深度学习
智慧社区
视频监控
异常识别
行为轨迹
精准度
基于深度学习的盾构隧道衬砌病害识别方法
盾构隧道
衬砌病害
深度学习
卷积神经网络
图像分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的视频火焰识别方法
来源期刊 信息技术与网络安全 学科 工学
关键词 火焰识别 计算机视觉 深度学习 卷积神经网络
年,卷(期) 2020,(12) 所属期刊栏目 人工智能
研究方向 页码范围 44-51
页数 8页 分类号 TP391.4
字数 语种 中文
DOI 10.19358/j.issn.2096-5133.2020.12.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴翠平 13 59 4.0 7.0
2 蔡春兵 1 0 0.0 0.0
3 徐鲲鹏 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (6)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
火焰识别
计算机视觉
深度学习
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导