基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为有效识别视觉系统采集的可见光图像中的舰船目标,提出了基于YOLO(You Only Look Once)网络模型改进的10层的卷积神经网络(Convolutional Neural Network,CNN)用于水面舰船目标的智能识别,通过反卷积的方法可视化CNN中不同卷积层提取到的舰船目标特征.按照传统目标识别方法提取了舰船目标的四类典型人工设计特征,将所提CNN的舰船目标识别结果与YOLO网络模型及四类人工设计特征结合支持向量机用于舰船目标识别的结果进行比较.实验结果表明,与YOLO网络模型相比,综合精确率、召回率和效率3个舰船目标识别的性能指标,改进后的CNN性能更好,从而验证了所提方法的有效性.不同数据量下采用典型特征识别舰船目标与基于深度CNN识别舰船目标的识别结果比较说明了不同类型目标识别算法的优劣势,有利于推动综合性视觉感知框架的构建.
推荐文章
一种基于小波分频带统计特征的舰船分类识别方法
舰船辐射噪声
小波变换
特征提取
目标分类识别
基于多物理场的舰船目标识别方法
舰船物理场
小波分解
特征融合
SVM
基于视觉感知特征的手机应用流量识别方法
手机应用
流量识别
卷积自编码
隐层特征
一种部位语义感知的视频行为识别方法
行为识别
深度学习
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于视觉感知的舰船目标智能化识别方法
来源期刊 电讯技术 学科 工学
关键词 无人作战系统 舰船目标识别 视觉感知 卷积神经网络 特征提取
年,卷(期) 2020,(10) 所属期刊栏目 应用基础与前沿技术
研究方向 页码范围 1133-1141
页数 9页 分类号 TN911.73|TP391.9
字数 语种 中文
DOI 10.3969/j.issn.1001-893x.2020.10.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邵利民 51 133 6.0 10.0
2 马啸 8 7 2.0 2.0
3 谷东亮 3 0 0.0 0.0
4 卢惠民 1 0 0.0 0.0
5 肖军浩 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (84)
共引文献  (69)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(10)
  • 参考文献(1)
  • 二级参考文献(9)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(7)
  • 参考文献(3)
  • 二级参考文献(4)
2014(15)
  • 参考文献(1)
  • 二级参考文献(14)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(5)
  • 参考文献(3)
  • 二级参考文献(2)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无人作战系统
舰船目标识别
视觉感知
卷积神经网络
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电讯技术
月刊
1001-893X
51-1267/TN
大16开
成都市营康西路85号
62-39
1958
chi
出版文献量(篇)
5911
总下载数(次)
21
总被引数(次)
28744
论文1v1指导