基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统故障监测与诊断算法在船舶柴油发动机燃油系统应用中精度较低的问题,提出一种基于粒子群优化(Particle Swarm Optimization,PSO)算法优化核主成分分析(Kernel Principal Component Analysis,KPCA)和支持向量机(Support Vector Machine,SVM)的故障监测和诊断新方法.首先采用KPCA提取样本数据中的非线性特征,获取其高维信息,同时在特征空间中构建T2和SPE统计量,实时监测故障的发生;对于监测到的故障样本,通过KPCA提取其非线性主成分,作为多分类SVM的输入样本进行故障模式识别,采用PSO算法分别对KPCA与多分类SVM的核函数参数、多分类SVM的惩罚因子进行优化,以提高故障监测和诊断模型的精度.船舶燃油系统故障监测和诊断试验结果表明,经过PSO优化后的KPCA-SVM故障监测和诊断模型的精度明显提高,验证了所提方法的优势和有效性.
推荐文章
基于PSO⁃KPCA⁃LVQ的燃气调压器故障诊断
燃气调压器
故障诊断
数据处理
核参数优化
数据分类
算法比较
基于KPCA-SVM的预测模型在铀矿堆浸中的应用
累计铀浸出率
预测
核主成分分析
支持向量机
粒子群算法
用于变压器DGA故障诊断的改进PSO优化SVM算法研究
变压器
故障诊断
DGA
模拟退火算法
粒子群优化算法
SVM
基于PSO-SVM的发动机故障诊断研究
粒子群优化算法
支持向量机
发动机
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO改进KPCA-SVM的故障监测和诊断方法研究
来源期刊 现代制造工程 学科 工学
关键词 核主成分分析 粒子群优化算法 支持向量机 模式识别 故障监测和诊断
年,卷(期) 2020,(9) 所属期刊栏目 仪器仪表/检测/监控
研究方向 页码范围 101-107
页数 7页 分类号 TP391.4
字数 语种 中文
DOI 10.16731/j.cnki.1671-3133.2020.09.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王冬捷 13 48 3.0 6.0
2 张勇亮 4 11 2.0 3.0
3 张志政 3 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (69)
共引文献  (38)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(10)
  • 参考文献(1)
  • 二级参考文献(9)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(9)
  • 参考文献(3)
  • 二级参考文献(6)
2018(5)
  • 参考文献(4)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
核主成分分析
粒子群优化算法
支持向量机
模式识别
故障监测和诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代制造工程
月刊
1671-3133
11-4659/TH
大16开
北京市西城区核桃园西街36号301A
2-431
1978
chi
出版文献量(篇)
9080
总下载数(次)
14
总被引数(次)
50123
论文1v1指导