基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有Android恶意代码检测方法容易被绕过的问题,提出了一种强对抗性的Android恶意代码检测方法.首先设计实现了动静态分析相结合的移动应用行为分析方法,该方法能够破除多种反分析技术的干扰,稳定可靠地提取移动应用的权限信息、防护信息和行为信息.然后,从上述信息中提取出能够抵御模拟攻击的能力特征和行为特征,并利用一个基于长短时记忆网络(Long Short-Term Memory,LSTM)的神经网络模型实现恶意代码检测.最后通过实验证明了本文所提出方法的可靠性和先进性.
推荐文章
一种针对Android平台恶意代码的检测方法及系统实现
Android
恶意代码检测
静态分析
动态分析
基于函数调用图的Android恶意代码检测方法研究
机器学习
Android程序
函数调用图
图谱理论
特征提取
一种基于网络对抗的恶意代码破坏效果控制模型
恶意代码
分级破坏
攻击效果预估
破坏效果控制
恶意代码分类的一种高维特征融合分析方法
恶意代码分类
特征提取
特征融合
深度特征处理
局部敏感哈希
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于深度学习的强对抗性Android恶意代码检测方法
来源期刊 电子学报 学科 工学
关键词 恶意代码 静态分析 动态分析 深度学习 长短时记忆网络
年,卷(期) 2020,(8) 所属期刊栏目 学术论文
研究方向 页码范围 1502-1508
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.0372-2112.2020.08.007
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (33)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(7)
  • 参考文献(2)
  • 二级参考文献(5)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
恶意代码
静态分析
动态分析
深度学习
长短时记忆网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
论文1v1指导