基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
特征提取对于网络分析任务而言是至关重要的,而网络嵌入学习的目的则是根据网络的结构和语义信息自动化构建节点或边的特征.现有的方法将网络嵌入分解为网络数据挖掘和数据降维两个独立的过程,因而无法很好地在潜在空间中对节点的分布进行建模描述.因此,提出了一种基于高阶混合投影估计的网络嵌入方法,该方法借鉴谱分解的思想,利用线性投影算子将网络从高维结构空间映射至低维特征空间,然后利用混合概率模型对节点的分布进行建模以维持网络的社区结构性质.此外,该方法还融入了局部节点相似性来防止发生过拟合现象.最后,为了验证该方法的有效性和鲁棒性,在四个真实的网络数据集之上和现有的网络嵌入算法进行了对比实验,在链路预测任务中,该方法分别将Micro-F1和Macro-F1指标的基准线平均提升了3.97%和2.23%,在节点分类任务中,该方法将AUC值的基准线平均提升了10.43%.
推荐文章
一种基于高阶累积量的回波对消方法
高阶累积量
回波对消
两次逼近法
LMS算法
一种基于投影不变量的目标跟踪方法
投影不变量
目标跟踪
视觉伺服
基于递归投影的结构性网络嵌入
网络嵌入
结构身份
特征学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于高阶混合投影估计的网络嵌入方法
来源期刊 计算机技术与发展 学科 工学
关键词 网络嵌入学习 混合概率模型 链路预测 节点分类
年,卷(期) 2020,(2) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 17-22
页数 6页 分类号 TP311
字数 5536字 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.02.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 潘嘉琪 南京航空航天大学计算机科学与技术学院 2 0 0.0 0.0
2 邹俊韬 南京航空航天大学计算机科学与技术学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (3)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络嵌入学习
混合概率模型
链路预测
节点分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导