基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对利用深度学习方法对街道图像进行深度估计,提出采用语义分割的方法解决深度图出现边界模糊等问题;估计深度通过左右视角图生成视差图进行无监督的训练.在网络模型中添加语义分割层,采取多个空洞卷积并行的结构增加感受野,同时减少了图像下采样的次数,降低了由于下采样带来的信息损失,使得的结果更加准确.这也是在深度估计中首次与空洞卷积相结合增加准确率.通过对KITTI街道数据集进行训练,与现有结果相比,除了增加检测准确性,降低错误率之外,使得效果图中的物体更加清晰,并且在效果图中还保留了一些原模型中被忽视掉的细节信息,将原始图像更加完整的表现出来.
推荐文章
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于深度复合卷积神经网络的低分辨率单影像复原
超低分辨率图像
卷积神经网络
单影像复原
基于伪三维卷积神经网络的手势姿态估计
手势姿态估计
伪三维卷积神经网络
三维特征
深度图像
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的单目深度估计
来源期刊 计算机工程与应用 学科 工学
关键词 深度估计 卷积神经网络 语义分割 无人驾驶
年,卷(期) 2020,(13) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 143-149
页数 7页 分类号 TP183
字数 5532字 语种 中文
DOI 10.3778/j.issn.1002-8331.1903-0207
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张桂玲 天津工业大学计算机科学与技术学院 13 43 4.0 5.0
3 王欣盛 天津工业大学计算机科学与技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (3)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度估计
卷积神经网络
语义分割
无人驾驶
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导