基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有方法提取阴影效率慢,提取不完整,估算过程未能实现半自动化甚至自动化的问题,该文基于高分二号影像,提出一种将K-means图像分割算法与阴影后处理结合一体应用在建筑物阴影提取的方法:首先,选择建筑物间隔稀疏,结构规则的城郊区域,利用K-means图像分割获取建筑物阴影、建筑物2类以提取建筑物阴影;其次,通过形态学算法、Canny边缘检测等对阴影后期处理,去除小区域及孔洞填充,边缘信息检测,获取最终建筑物阴影;最后,根据太阳、卫星、建筑物以及阴影长度之间几何关系计算建筑物高度.考虑研究区域户型,每层楼高以2.8m量测建筑物实际高度作为验证,实验结果表明:利用K-means图像分割能有效提取出阴影区域,与后期阴影优化策略结合,大幅度改善了阴影区域的完整性,获取建筑物高度信息自动化程度得到提高.
推荐文章
边缘检测与面向对象结合的高分影像建筑物提取
建筑物提取
高分影像
面向对象
多尺度分割
边缘检测
基于遥感的建筑物高度快速提取研究综述
城市高度
建筑物高度提取
光学遥感影像
高分辨率SAR影像
多尺度显著性引导的高分辨率遥感影像建筑物提取
遥感影像
建筑物提取
显著性检测
多尺度
随机森林
基于深度学习的高分辨率 遥感影像建筑物提取
遥感影像;
建筑物提取;
多尺度;
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高分影像建筑物阴影优化提取与高度估算
来源期刊 测绘科学 学科 地球科学
关键词 K-means聚类算法 形态学运算 Canny算法 高分二号影像
年,卷(期) 2020,(8) 所属期刊栏目 摄影测量学与遥感
研究方向 页码范围 103-109,137
页数 8页 分类号 P237
字数 语种 中文
DOI 10.16251/j.cnki.1009-2307.2020.08.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张继贤 山东科技大学测绘科学与工程学院 26 217 8.0 14.0
3 李阳春 12 19 3.0 3.0
4 程国旗 山东科技大学测绘科学与工程学院 2 0 0.0 0.0
6 陈欢 山东科技大学测绘科学与工程学院 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (130)
共引文献  (43)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(7)
  • 参考文献(0)
  • 二级参考文献(7)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(11)
  • 参考文献(0)
  • 二级参考文献(11)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(13)
  • 参考文献(2)
  • 二级参考文献(11)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(13)
  • 参考文献(0)
  • 二级参考文献(13)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(20)
  • 参考文献(1)
  • 二级参考文献(19)
2015(10)
  • 参考文献(2)
  • 二级参考文献(8)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K-means聚类算法
形态学运算
Canny算法
高分二号影像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘科学
月刊
1009-2307
11-4415/P
大16开
北京市海淀区北太平路16号
2-945
1976
chi
出版文献量(篇)
7258
总下载数(次)
36
总被引数(次)
67354
论文1v1指导