基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
数据是电网调度控制系统稳定运行的关键依据,而因为硬件故障等原因导致数据采集过程中的数据缺失会影响到系统数据的完整性,从而对电网调度的智能性和高效性产生相应的影响.因此,针对缺失数据的准确预测对于智能电网调度系统的建设有着重要的意义.本文针对解决电网领域电能量采集系统的缺失数据预测问题对已有的基于CNN和LSTM联合预测方法进行改进和优化,在联合预测模型基础上添加修正模型,针对不同缺失数据段利用CNN卷积神经网络和电力数据里特有的对侧数据场景建模,实验结果证明该方法将平均绝对误差值降到0.142,提高了现有预测模型的准确率,对电网调度系统的智能性和高效性提供了数据完整性、准确性的保障.
推荐文章
基于CNN-LSTM的QAR数据特征提取与预测
深度学习
融合卷积神经网络
长短时记忆网络
特征提取
时间序列预测
基于矩阵分解的卫星遥测缺失数据预测算法
卫星
遥测数据
数据预测
矩阵分解
基于LSTM算法的电力谐波监测数据预测
长短时记忆网络
谐波监测数据
预测分析
基于添加Dropout层的CNN-LSTM网络短期负荷预测
Dropout技术
长短期记忆网络
卷积网络
负荷预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CNN和LSTM联合预测并修正的电量缺失数据预测
来源期刊 计算机系统应用 学科
关键词 电量缺失数据预测 CNN LSTM 对侧数据
年,卷(期) 2020,(8) 所属期刊栏目 软件技术·算法
研究方向 页码范围 192-198
页数 7页 分类号
字数 6421字 语种 中文
DOI 10.15888/j.cnki.csa.007580
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 丁云峰 中国科学院沈阳计算技术研究所 6 26 4.0 5.0
2 郭蕴颖 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (61)
共引文献  (8)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(13)
  • 参考文献(0)
  • 二级参考文献(13)
2017(7)
  • 参考文献(0)
  • 二级参考文献(7)
2018(17)
  • 参考文献(1)
  • 二级参考文献(16)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电量缺失数据预测
CNN
LSTM
对侧数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导