基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
最近几年,深层卷积神经网络在解决单图像超分辨率问题上有着不错的表现.为了改善卷积神经网络的层数越深带来的计算量越大和实时重建速度越慢的缺点,结合现有的卷积网络模型,本文提出一种轻量级的网络结构.在神经网络层中减少网络层数,利用通道分离构建出局部特征的多尺度增强结构,进一步地结合残差网络进行模型构建.实验结果表明,与LapSRN方法、VDSR方法、传统的插值法等相比,该方法实时重建速度较快,且在峰值信噪比和结构相似性上不弱于其他方法.
推荐文章
基于CNN的轻量级神经网络单幅图像超分辨率研究
卷积神经网络
轻量级神经网络
单幅图像超分辨率
图像增强
基于卷积神经网络的视频图像超分辨率重建方法
视频
超分辨率重建
卷积神经网络
深度学习
基于改进卷积神经网络的图像超分辨率算法研究
低分辨率
超分辨率
卷积神经网络
图像处理
复原
基于金字塔式双通道卷积神经网络的深度图像超分辨率重建
深度图像
超分辨率重建
双通道卷积神经网络
金字塔式网络结构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的轻量级图像超分辨率
来源期刊 计算机与现代化 学科 工学
关键词 卷积神经网络 超分辨率 轻量级网络 通道分离 残差网络
年,卷(期) 2020,(11) 所属期刊栏目 图像处理
研究方向 页码范围 23-27
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1006-2475.2020.11.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄洪全 44 289 8.0 15.0
2 梁超 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (111)
共引文献  (16)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(4)
  • 参考文献(0)
  • 二级参考文献(4)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(12)
  • 参考文献(0)
  • 二级参考文献(12)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(12)
  • 参考文献(0)
  • 二级参考文献(12)
2016(11)
  • 参考文献(0)
  • 二级参考文献(11)
2017(7)
  • 参考文献(2)
  • 二级参考文献(5)
2018(6)
  • 参考文献(0)
  • 二级参考文献(6)
2019(13)
  • 参考文献(10)
  • 二级参考文献(3)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
超分辨率
轻量级网络
通道分离
残差网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导