基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
因子分解机对特征各维度之间的一阶线性关系和二阶线性关系建模,在推荐系统中已有较多应用.神经因子分解机模型(NFM)是因子分解机与神经网络的结合模型,它能捕获特征之间的高阶交互信息,使得模型预测效果更佳.但由于神经因子分解机模型一般都是采用全连接的前馈神经网络,使得整个推荐网络过于复杂,存在过拟合风险.为了降低神经因子分解机模型的整体复杂度,提高推荐模型的泛化性能,提出一种基于交叉网络的因子分解机模型(CFM),降低模型复杂度,提高模型泛化性能.实验表明,该模型在数据集上的预测准确度为77%左右,相比NFM预测准确度提高了约2%,整体模型泛化性能也有所提高.
推荐文章
基于高阶偏差的因子分解机推荐算法
推荐系统
矩阵因子分解
因子分解机
评分偏差
基于改进神经协同过滤模型的高校选课推荐研究
课程推荐
神经协同过滤
广义矩阵分解
多层感知机
混合因子矩阵分解推荐算法
推荐算法
矩阵分解
混合因子
推荐解释
冷启动
基于因子分解机的推荐模型研究
因子分解机
模型预测
目标优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 神经因子分解机推荐模型改进研究
来源期刊 软件导刊 学科 工学
关键词 推荐系统 交叉网络 神经因子分解机
年,卷(期) 2020,(4) 所属期刊栏目 计算机软件与理论
研究方向 页码范围 115-118
页数 4页 分类号 TP301
字数 2881字 语种 中文
DOI 10.11907/rjdk.191717
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李烨 上海理工大学光电信息与计算机工程学院 44 133 7.0 9.0
2 吴韦俊 上海理工大学光电信息与计算机工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (175)
共引文献  (947)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(10)
  • 参考文献(0)
  • 二级参考文献(10)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(12)
  • 参考文献(0)
  • 二级参考文献(12)
2005(10)
  • 参考文献(0)
  • 二级参考文献(10)
2006(16)
  • 参考文献(0)
  • 二级参考文献(16)
2007(27)
  • 参考文献(0)
  • 二级参考文献(27)
2008(16)
  • 参考文献(0)
  • 二级参考文献(16)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(11)
  • 参考文献(0)
  • 二级参考文献(11)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
推荐系统
交叉网络
神经因子分解机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
论文1v1指导