基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对非负矩阵分解(NMF)具有一定的稀疏性,但不足以进行有效的分类的问题,为了获得特征提取过程中缺失的高维数据结构信息和隐藏信息,提高非负矩阵分解的低秩性与稀疏性,提出一种基于隐式低秩表示的非负矩阵分解模型(NLatMF).该模型将隐式低秩算法提取的原始数据非负的低秩部分和隐式部分应用于非负矩阵分解,更有效地解决了分类问题.将该模型用于图像分类,通过在Yaleface等人脸数据库上仿真,结果表明:新模型有效提高了识别率.
推荐文章
基于小波和非负稀疏矩阵分解的人脸识别方法
人脸识别
小波变换
非负矩阵分解
Fisher线性判别
基于非负矩阵分解算法的目标成像识别方法
引信
激光成像
非负矩阵分解
目标识别
基于小波变换和二维非负矩阵分解的人脸识别算法
二维离散小波变换
二维非负矩阵分解
人脸识别
图像融合
基于低秩表示的非负张量分解算法
图像分类
低秩表示
非负
张量分解
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于隐式低秩非负矩阵分解模型的人脸识别方法
来源期刊 传感器与微系统 学科 工学
关键词 非负矩阵分解 特征提取 隐式低秩表示 稀疏性 图像分类
年,卷(期) 2020,(3) 所属期刊栏目 研究与探讨
研究方向 页码范围 57-60,63
页数 5页 分类号 TP391.4
字数 3522字 语种 中文
DOI 10.13873/J.1000-9787(2020)03-0057-04
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨国亮 江西理工大学电气工程与自动化学院 74 384 10.0 16.0
2 龚曼 江西理工大学电气工程与自动化学院 5 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (10)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(11)
  • 参考文献(3)
  • 二级参考文献(8)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非负矩阵分解
特征提取
隐式低秩表示
稀疏性
图像分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
传感器与微系统
月刊
1000-9787
23-1537/TN
大16开
哈尔滨市南岗区一曼街29号
14-203
1982
chi
出版文献量(篇)
9750
总下载数(次)
43
论文1v1指导