基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
专利信息作为目前国际知识产权中科技含量最高的存在,是国家和企业获取竞争优势最全面的技术情报来源.使用专利数据网的数据信息作为测试数据,采用K-means算法,针对专利文本数据进行聚类分析,旨在找出隐含在专利数据信息中不容易被直观发现或直接统计得出的数据情报信息.通过深入挖掘专利信息,提高专利信息利用率,使之转换为具有实际价值的情报信息,有效解决了对专利信息利用不足的问题.
推荐文章
基于划分的数据挖掘K-means聚类算法分析
数据挖掘
聚类分析
K-means聚类算法
聚类中心选取
K-means算法改进
初始中心点
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
基于数据抽样的自动k-means聚类算法
k-means算法
信息熵
最优样本抽取
有效性指标
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K-means算法的专利数据分析
来源期刊 现代信息科技 学科 工学
关键词 聚类分析 K-means 专利数据 数据挖掘
年,卷(期) 2020,(5) 所属期刊栏目 计算机技术
研究方向 页码范围 85-86,89
页数 3页 分类号 TP391.1|TP312
字数 3591字 语种 中文
DOI 10.19850/j.cnki.2096-4706.2020.05.025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴海涛 19 73 5.0 8.0
2 薛淑晖 2 0 0.0 0.0
3 王丽 4 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (22)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(11)
  • 参考文献(0)
  • 二级参考文献(11)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类分析
K-means
专利数据
数据挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代信息科技
半月刊
2096-4706
44-1736/TN
16开
广东省广州市白云区机场路1718号8A09
46-250
2017
chi
出版文献量(篇)
4784
总下载数(次)
45
总被引数(次)
3182
论文1v1指导