基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对齿轮箱振动信号非平稳特性以及故障样本数据处理困难的特点,提出了基于小波包分解和孪生支持向量机的故障诊断方法.首先采集信号通过Mallat塔式算法对信号进行小波分解再重构从而获得频带能量谱,然后通过归一化的方法再提取各频带的故障诊断特征向量.并将它送入孪生支持向量机进行训练.实验表明,该方法有效提高了分类精度和鲁棒性,而且具有较高的诊断效率.
推荐文章
基于EMD分解和支持向量机的齿轮箱故障诊断与研究
齿轮箱
故障诊断
EMD
支持向量机
基于决策树与多元支持向量机的齿轮箱早期故障诊断方法
齿轮箱
决策树
支持向量机
故障识别
神经网络
基于MED-SVM的齿轮箱故障诊断方法
最小熵反褶积
支持向量机
特征提取
交叉验证
故障诊断
深度支持向量机在齿轮故障诊断中的应用
故障诊断
变分模态分解
峭度
深度支持向量机
齿轮箱
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于孪生支持向量机的齿轮箱故障诊断
来源期刊 自动化技术与应用 学科 工学
关键词 齿轮箱 小波包分解 孪生支持向量机 故障诊断
年,卷(期) 2020,(7) 所属期刊栏目 控制理论与应用
研究方向 页码范围 5-10
页数 6页 分类号 TH133.33
字数 3767字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 丁云飞 上海电机学院电气学院 18 11 2.0 3.0
2 刘军科 上海电机学院电气学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (82)
共引文献  (10)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(16)
  • 参考文献(0)
  • 二级参考文献(16)
2015(11)
  • 参考文献(2)
  • 二级参考文献(9)
2016(5)
  • 参考文献(3)
  • 二级参考文献(2)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
齿轮箱
小波包分解
孪生支持向量机
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化技术与应用
月刊
1003-7241
23-1474/TP
大16开
哈尔滨市开发区汉水路165号
14-37
1982
chi
出版文献量(篇)
8131
总下载数(次)
24
总被引数(次)
36824
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导