基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在传统的K-means算法中,K值和初始聚类中心往往凭人的经验或随机选取,算法对选取结果又比较敏感,同时算法易陷入局部最优.论文针对这些不足,利用遗传算法的全局寻优特性和自适应搜索概率技术等优势,改善K-means聚类方式.仿真实验表明,新算法在平均迭代次数和准确率方面优于传统K-means算法.
推荐文章
基于复合形遗传算法的K-means优化聚类方法
K-means聚类
遗传算法
复合形
复合形遗传算法
数据挖掘
基于改进BA算法的K-means聚类
蝙蝠算法
莱维飞行
惯性权重
limit阈值
K-means算法
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
基于变异的k-means聚类算法
聚类
mk-means算法
变异
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法的K-means聚类改进研究
来源期刊 计算机与数字工程 学科 工学
关键词 K-means 聚类 遗传算法 算子
年,卷(期) 2020,(8) 所属期刊栏目 算法与分析
研究方向 页码范围 1831-1834,1839
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.08.003
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (28)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(4)
  • 参考文献(2)
  • 二级参考文献(2)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K-means
聚类
遗传算法
算子
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导