基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对因脑电信号存在个体差异性而造成多类运动想象脑电信号特征提取困难和识别正确率较低的问题,提出一种基于PSO-CSP-SVM的运动想象脑电信号特征提取及分类算法.首先,利用粒子群优化(PSO)算法优化得到不同个体脑电信号的最佳时间段和频段;然后,基于优化时频段的脑电信号,利用"一对多"共空间模式(OVR-CSP)算法进行特征提取,将特征向量输入到"一对一"支持向量机(OVO-SVM)中实现分类,并且将分类错误率作为PSO算法的适应度函数值;最后,采用BCI2005desc_Ⅲa数据集验证该算法的分类效果.研究结果表明:相比基于固定时频段脑电信号得到的分类结果以及其他文献中算法的分类结果,该算法的平均分类准确率有较大提高,达87.65%,证明该算法能够有效提取脑电特征,并且具有较好的运动想象脑电信号识别效果.
推荐文章
基于ABC-SVM的运动想象脑电信号模式分类
脑电信号
人工蜂群算法
支持向量机
正则化共空间模式
模式分类
多类运动想象脑电信号特征提取与分类
脑电信号
小波包方差
小波包熵
共同空间模式
特征提取
支持向量机
基于小波-共空间模式的脑电信号特征提取
脑电信号
粒子群算法
共同空间模式
离散小波变换
能量均值
支持向量机
多通道三维视觉指导运动想象脑电信号特征选择算法
脑机接口
运动想象
脑电信号
特征选择
自适应差分进化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于PSO-CSP-SVM的运动想象脑电信号特征提取及分类算法
来源期刊 中南大学学报(自然科学版) 学科 工学
关键词 运动想象 粒子群优化 共空间模式 支持向量机
年,卷(期) 2020,(10) 所属期刊栏目 机械工程? 控制科学与工程
研究方向 页码范围 2855-2866
页数 12页 分类号 TP241
字数 语种 中文
DOI 10.11817/j.issn.1672-7207.2020.10.017
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (55)
共引文献  (87)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(3)
  • 二级参考文献(2)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(6)
  • 参考文献(3)
  • 二级参考文献(3)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
运动想象
粒子群优化
共空间模式
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中南大学学报(自然科学版)
月刊
1672-7207
43-1426/N
大16开
湖南省长沙市中南大学校内
42-19
1956
chi
出版文献量(篇)
7515
总下载数(次)
5
总被引数(次)
79127
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导