基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为构建基于深度学习的微管蛋白秋水仙碱位点抑制剂(CBSIs)预测模型,进行CBSIs的活性预测和药物虚拟筛选,我们收集了1482个结构多样性的靶向微管蛋白秋水仙碱位点的抑制剂和非抑制剂,以分子指纹和分子图为特征表述,采用图卷积神经网络深度学习方法,建立分类预测模型.对所建立模型的预测结果进行比较,发现了一个最优预测模型(Model-Chemprop),它在测试集上的敏感度(SE)值为0.9109、特异性(SP)值为0.8125、总体准确度(Q)值为87.92%、AUC值为0.891.因此,基于深度学习建立的最优模型可以作为虚拟筛选工具,用于新型CBSIs的活性预测和发现,以及靶向富集库的构建.
推荐文章
Smoothened蛋白抑制剂的研究进展
Hedgehog信号通路
Smoothened蛋白抑制剂
肿瘤
百合中秋水仙碱超临界流体萃取工艺的研究
超临界流体萃取
百合
秋水仙碱
高效液相色谱
蛋白激酶C抑制剂的研究新进展
蛋白激酶C
酶抑制剂
胰蛋白酶抑制剂
蛋白激酶抑制剂
肿瘤
综述
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的微管蛋白秋水仙碱位点抑制剂的预测研究
来源期刊 化学研究与应用 学科 化学
关键词 微管蛋白秋水仙碱位点抑制剂 分子指纹 分子图表达 图卷积神经网络
年,卷(期) 2020,(12) 所属期刊栏目 研究论文
研究方向 页码范围 2192-2198
页数 7页 分类号 O641
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄汉辉 15 31 3.0 5.0
2 邓燕红 5 6 2.0 2.0
3 蔡涵萱 1 0 0.0 0.0
4 张建华 1 0 0.0 0.0
5 王领 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (6)
参考文献  (22)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(11)
  • 参考文献(2)
  • 二级参考文献(9)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(8)
  • 参考文献(2)
  • 二级参考文献(6)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
微管蛋白秋水仙碱位点抑制剂
分子指纹
分子图表达
图卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
化学研究与应用
月刊
1004-1656
51-1378/O6
大16开
四川省成都市武侯区望江路29号四川大学化学学院内
62-180
1989
chi
出版文献量(篇)
6995
总下载数(次)
13
总被引数(次)
39631
论文1v1指导