基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当前大学生学业预警大都仅仅是基于学分成绩而存在片面性且不太准确的问题,本文通过将学生和课程分别类比为"用户"与"商品",采用基于Item的协同过滤(Item-based collaborativefiltering,ItemCF)推荐技术实现向学生"推荐"最有可能挂科的课程,协助完成大学生的学业预警.该基于ItemCF的学业预警算法在Spark上实现,相比于FP-growth,基于协同过滤推荐等方法的大学生学业预警系统可以获得50.74%的召回率、25.25%的精确度、33.72的F1-Messure和85.19%的覆盖率.
推荐文章
一种基于稀疏分段的协同过滤推荐算法
稀疏分段
支持向量回归
基于项目的推荐
协同过滤
数据稀疏性
小样本
一种基于Sigmoid函数的改进协同过滤推荐算法
推荐系统
协同过滤
稀疏性问题
Sigmoid函数
一种优化的基于项目评分预测的协同过滤推荐算法
推荐系统
协同过滤
属性相似性
评分相似性
基于协同过滤和Rankboost算法的酒店推荐系统
推荐系统
协同过滤
Rankboost算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于协同过滤推荐的大学生学业预警系统
来源期刊 软件 学科 工学
关键词 学业预警 协同过滤推荐 ItemCF FP-growth Spark
年,卷(期) 2020,(5) 所属期刊栏目 设计研究与应用
研究方向 页码范围 201-203
页数 3页 分类号 TP3
字数 1627字 语种 中文
DOI 10.3969/j.issn.1003-6970.2020.05.043
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 向东旭 西北农林科技大学信息工程学院 1 0 0.0 0.0
2 宋明桂 西北农林科技大学信息工程学院 1 0 0.0 0.0
3 李文雅 西北农林科技大学信息工程学院 1 0 0.0 0.0
4 姚士晓 西北农林科技大学信息工程学院 1 0 0.0 0.0
5 聂炎明 西北农林科技大学信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (77)
共引文献  (65)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(12)
  • 参考文献(0)
  • 二级参考文献(12)
2014(12)
  • 参考文献(1)
  • 二级参考文献(11)
2015(8)
  • 参考文献(2)
  • 二级参考文献(6)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
学业预警
协同过滤推荐
ItemCF
FP-growth
Spark
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件
月刊
1003-6970
12-1151/TP
16开
北京市3108信箱
1979
chi
出版文献量(篇)
9374
总下载数(次)
40
总被引数(次)
23629
论文1v1指导