原文服务方: 中国机械工程       
摘要:
为了有效降低因驾驶员紧急换道行为而诱发的交通事故,提高道路交通事故链阻断效率,提出一种基于高斯混合隐马尔科夫模型(GMM-HMM)和人工神经网络(ANN)的紧急换道行为预测方法.首先利用GMM-HMM对车辆行驶状态以及驾驶行为连续观察序列进行换道意图辨识,采用ANN预测下一时段的驾驶行为,再预测换道过程中的横向加速度变化率,从而判断紧急换道的危险程度.驾驶员在环仿真实验及实车实验结果表明,该方法预测避险成功率达92.83%,实验避险成功率达90.32%.该方法能有效地对紧急换道行为进行提前警告与干预.
推荐文章
基于离散隐马尔科夫模型的语音识别技术
语音识别
隐马尔科夫模型
动态时间规整
人工神经网络
船舶交通量的BP神经网络-马尔科夫预测模型
船舶交通量
BP神经网络
马尔科夫预测模型
基于改进隐马尔科夫模型的鲁棒用户行为识别
隐马尔科夫模型
遗传算法
Baum-Welch算法
用户行为识别
基于马尔科夫模型和卷积神经网络的异常数据检测方法
异常检测
马尔科夫模型
卷积神经网络
多维数据
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于高斯混合隐马尔科夫模型与人工神经网络的紧急换道行为预测方法
来源期刊 中国机械工程 学科
关键词 换道行为预测 高斯混合隐马尔可夫模型 人工神经网络 道路交通事故链阻断
年,卷(期) 2020,(23) 所属期刊栏目 机械基础工程
研究方向 页码范围 2874-2882,2890
页数 10页 分类号 U580.70
字数 语种 中文
DOI 10.3969/j.issn.1004-132X.2020.23.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 梁军 34 164 7.0 11.0
2 陈龙 368 3236 25.0 34.0
3 陈小波 20 65 5.0 7.0
4 于扬 2 0 0.0 0.0
5 朱宁 4 6 1.0 2.0
6 华国栋 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (28)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(7)
  • 参考文献(2)
  • 二级参考文献(5)
2018(3)
  • 参考文献(1)
  • 二级参考文献(2)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
换道行为预测
高斯混合隐马尔可夫模型
人工神经网络
道路交通事故链阻断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国机械工程
月刊
1004-132X
42-1294/TH
大16开
湖北省武汉市洪山区南李路湖北工业大学
1990-01-01
中文
出版文献量(篇)
13171
总下载数(次)
0
总被引数(次)
206238
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导