基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于深度卷积神经网络的目标检测算法对硬件的计算性能要求很高,难以部署在一些嵌入式设备和移动终端中,而当前的一些轻量化分类算法没有针对目标检测任务的特点进行网络结构设计.针对这一问题,借鉴深度可分离卷积的思路,通过引入多尺度的特征融合模块,设计了一个针对目标检测任务的轻量化特征提取网络TinyNet,进而提高了轻量化特征提取网络对不同尺度目标的适应性.结合当前性能较好的YOLOv3目标检测框架,用TinyNet取代YOLOv3的特征提取网络,并利用轻量化模块进一步优化YOLOv3的检测子网络,得到一个轻量化的目标检测模型Tiny-YOLOv3+.实验结果表明,相比于使用其他轻量化特征提取网络设计的YOLOv3,Tiny-YOLOv3+在检测精度有所提升的基础上,大大地降低了原模型的参数量,明显提升了检测速度,有效提高了轻量化检测模型的性能和效率.
推荐文章
一种快速的图像小目标检测算法
小目标检测
局部分形维数
遗传算法
闲值选取法
一种改进的视频运动目标检测算法
视频运动目标检测
背景建模
混合高斯模型
区域生长
视频运动目标定位
一种有效的运动人体目标检测算法
目标检测
背景减除法
背景提取
自适应阈值
边缘提取
一种多级运动目标检测算法
运动目标检测
背景建模
混合高斯模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种轻量化目标检测算法研究
来源期刊 计算机技术与发展 学科 工学
关键词 深度学习 目标检测 轻量化 深度可分离卷积 YOLOv3
年,卷(期) 2020,(11) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 42-47
页数 6页 分类号 TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.11.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 史燕中 4 3 1.0 1.0
2 王春华 3 5 1.0 2.0
3 余进 1 0 0.0 0.0
4 赵倩 1 0 0.0 0.0
5 吴蔚 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (85)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2017(8)
  • 参考文献(2)
  • 二级参考文献(6)
2018(12)
  • 参考文献(3)
  • 二级参考文献(9)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
目标检测
轻量化
深度可分离卷积
YOLOv3
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导