基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
命名实体识别是自然语言处理中的一项基础性关键任务,基于电子病历命名实体识别是临床决策支持和医疗知识图谱构建等任务的基础.针对传统的双向长短时记忆神经网络(bi-directional long short-term memory,BiLSTM)结合条件随机场(conditional random field,CRF)的BiLSTM-CRF模型在处理医疗文本命名实体识别问题时面临的文本特征提取不够充分和未登录词不能充分识别等问题,引入注意力机制(attention mechanisms),提出一种基于注意力机制的BiLSTM-CRF命名实体识别模型.该模型以字向量作为神经网络的输入,BiLSTM层建模上下文信息,捕捉双向的语义依赖;ATTENTION层重点关注输入数据中显著的与当前输出相关的特征,抑制无用信息;CRF层充分考虑了句子级别的标签依赖信息,对整个句子进行解码预测输出.实验结果表明,在电子病历的命名实体识别中,该模型较传统模型提升了一定的识别效果.
推荐文章
临床医学命名实体识别的病历质量筛选标准研究
电子病历
临床医学命名实体
病历质量
筛选标准
融合词位字向量的军事领域命名实体识别
军事
命名实体识别
词位字向量
BI-GRU-CRF
深度神经网络
序列标注
基于自注意力机制的军事命名实体识别
LSTM
命名实体识别
深度学习
自注意力
基于BERT的医疗电子病历命名实体识别
电子病历
命名实体识别
BERT
膨胀卷积神经网络
多头注意力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合注意力机制的电子病历命名实体识别
来源期刊 计算机技术与发展 学科 工学
关键词 命名实体识别 注意力机制 电子病历 双向长短期记忆神经网络 条件随机场
年,卷(期) 2020,(10) 所属期刊栏目 应用开发研究
研究方向 页码范围 216-220
页数 5页 分类号 TP391.1
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.10.038
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (55)
共引文献  (64)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
命名实体识别
注意力机制
电子病历
双向长短期记忆神经网络
条件随机场
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导